-
bigarray
-
dynlink
-
ocamlbytecomp
-
ocamlcommon
-
ocamlmiddleend
-
ocamloptcomp
-
odoc_info
-
stdlib
-
str
-
unix
Library
Module
Module type
Parameter
Class
Class type
Byte sequence operations.
A byte sequence is a mutable data structure that contains a fixed-length sequence of bytes. Each byte can be indexed in constant time for reading or writing.
Given a byte sequence s
of length l
, we can access each of the l
bytes of s
via its index in the sequence. Indexes start at 0
, and we will call an index valid in s
if it falls within the range [0...l-1]
(inclusive). A position is the point between two bytes or at the beginning or end of the sequence. We call a position valid in s
if it falls within the range [0...l]
(inclusive). Note that the byte at index n
is between positions n
and n+1
.
Two parameters start
and len
are said to designate a valid range of s
if len >= 0
and start
and start+len
are valid positions in s
.
Byte sequences can be modified in place, for instance via the set
and blit
functions described below. See also strings (module String
), which are almost the same data structure, but cannot be modified in place.
Bytes are represented by the OCaml type char
.
The labeled version of this module can be used as described in the StdLabels
module.
- since 4.02.0
get s n
returns the byte at index n
in argument s
.
- raises Invalid_argument
if
n
is not a valid index ins
.
set s n c
modifies s
in place, replacing the byte at index n
with c
.
- raises Invalid_argument
if
n
is not a valid index ins
.
create n
returns a new byte sequence of length n
. The sequence is uninitialized and contains arbitrary bytes.
- raises Invalid_argument
if
n < 0
orn >
Sys.max_string_length
.
make n c
returns a new byte sequence of length n
, filled with the byte c
.
- raises Invalid_argument
if
n < 0
orn >
Sys.max_string_length
.
init n f
returns a fresh byte sequence of length n
, with character i
initialized to the result of f i
(in increasing index order).
- raises Invalid_argument
if
n < 0
orn >
Sys.max_string_length
.
Return a new byte sequence that contains the same bytes as the given string.
Return a new string that contains the same bytes as the given byte sequence.
sub s ~pos ~len
returns a new byte sequence of length len
, containing the subsequence of s
that starts at position pos
and has length len
.
- raises Invalid_argument
if
pos
andlen
do not designate a valid range ofs
.
Same as sub
but return a string instead of a byte sequence.
extend s ~left ~right
returns a new byte sequence that contains the bytes of s
, with left
uninitialized bytes prepended and right
uninitialized bytes appended to it. If left
or right
is negative, then bytes are removed (instead of appended) from the corresponding side of s
.
- raises Invalid_argument
if the result length is negative or longer than
Sys.max_string_length
bytes.
- since 4.05.0 in BytesLabels
fill s ~pos ~len c
modifies s
in place, replacing len
characters with c
, starting at pos
.
- raises Invalid_argument
if
pos
andlen
do not designate a valid range ofs
.
blit ~src ~src_pos ~dst ~dst_pos ~len
copies len
bytes from sequence src
, starting at index src_pos
, to sequence dst
, starting at index dst_pos
. It works correctly even if src
and dst
are the same byte sequence, and the source and destination intervals overlap.
- raises Invalid_argument
if
src_pos
andlen
do not designate a valid range ofsrc
, or ifdst_pos
andlen
do not designate a valid range ofdst
.
blit ~src ~src_pos ~dst ~dst_pos ~len
copies len
bytes from string src
, starting at index src_pos
, to byte sequence dst
, starting at index dst_pos
.
- raises Invalid_argument
if
src_pos
andlen
do not designate a valid range ofsrc
, or ifdst_pos
andlen
do not designate a valid range ofdst
.
- since 4.05.0 in BytesLabels
concat ~sep sl
concatenates the list of byte sequences sl
, inserting the separator byte sequence sep
between each, and returns the result as a new byte sequence.
- raises Invalid_argument
if the result is longer than
Sys.max_string_length
bytes.
cat s1 s2
concatenates s1
and s2
and returns the result as a new byte sequence.
- raises Invalid_argument
if the result is longer than
Sys.max_string_length
bytes.
- since 4.05.0 in BytesLabels
iter ~f s
applies function f
in turn to all the bytes of s
. It is equivalent to f (get s 0); f (get s 1); ...; f (get s
(length s - 1)); ()
.
Same as iter
, but the function is applied to the index of the byte as first argument and the byte itself as second argument.
map ~f s
applies function f
in turn to all the bytes of s
(in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.
mapi ~f s
calls f
with each character of s
and its index (in increasing index order) and stores the resulting bytes in a new sequence that is returned as the result.
Return a copy of the argument, without leading and trailing whitespace. The bytes regarded as whitespace are the ASCII characters ' '
, '\012'
, '\n'
, '\r'
, and '\t'
.
Return a copy of the argument, with special characters represented by escape sequences, following the lexical conventions of OCaml. All characters outside the ASCII printable range (32..126) are escaped, as well as backslash and double-quote.
- raises Invalid_argument
if the result is longer than
Sys.max_string_length
bytes.
index s c
returns the index of the first occurrence of byte c
in s
.
- raises Not_found
if
c
does not occur ins
.
index_opt s c
returns the index of the first occurrence of byte c
in s
or None
if c
does not occur in s
.
- since 4.05
rindex s c
returns the index of the last occurrence of byte c
in s
.
- raises Not_found
if
c
does not occur ins
.
rindex_opt s c
returns the index of the last occurrence of byte c
in s
or None
if c
does not occur in s
.
- since 4.05
index_from s i c
returns the index of the first occurrence of byte c
in s
after position i
. index s c
is equivalent to index_from s 0 c
.
- raises Invalid_argument
if
i
is not a valid position ins
.
- raises Not_found
if
c
does not occur ins
after positioni
.
index_from_opt s i c
returns the index of the first occurrence of byte c
in s
after position i
or None
if c
does not occur in s
after position i
. index_opt s c
is equivalent to index_from_opt s 0 c
.
- raises Invalid_argument
if
i
is not a valid position ins
.
- since 4.05
rindex_from s i c
returns the index of the last occurrence of byte c
in s
before position i+1
. rindex s c
is equivalent to rindex_from s (length s - 1) c
.
- raises Invalid_argument
if
i+1
is not a valid position ins
.
- raises Not_found
if
c
does not occur ins
before positioni+1
.
rindex_from_opt s i c
returns the index of the last occurrence of byte c
in s
before position i+1
or None
if c
does not occur in s
before position i+1
. rindex_opt s c
is equivalent to rindex_from s (length s - 1) c
.
- raises Invalid_argument
if
i+1
is not a valid position ins
.
- since 4.05
contains_from s start c
tests if byte c
appears in s
after position start
. contains s c
is equivalent to contains_from
s 0 c
.
- raises Invalid_argument
if
start
is not a valid position ins
.
rcontains_from s stop c
tests if byte c
appears in s
before position stop+1
.
- raises Invalid_argument
if
stop < 0
orstop+1
is not a valid position ins
.
Return a copy of the argument, with all lowercase letters translated to uppercase, including accented letters of the ISO Latin-1 (8859-1) character set.
- deprecated
Functions operating on Latin-1 character set are deprecated.
Return a copy of the argument, with all uppercase letters translated to lowercase, including accented letters of the ISO Latin-1 (8859-1) character set.
- deprecated
Functions operating on Latin-1 character set are deprecated.
Return a copy of the argument, with the first character set to uppercase, using the ISO Latin-1 (8859-1) character set.
- deprecated
Functions operating on Latin-1 character set are deprecated.
Return a copy of the argument, with the first character set to lowercase, using the ISO Latin-1 (8859-1) character set.
- deprecated
Functions operating on Latin-1 character set are deprecated.
Return a copy of the argument, with all lowercase letters translated to uppercase, using the US-ASCII character set.
- since 4.05.0
Return a copy of the argument, with all uppercase letters translated to lowercase, using the US-ASCII character set.
- since 4.05.0
Return a copy of the argument, with the first character set to uppercase, using the US-ASCII character set.
- since 4.05.0
Return a copy of the argument, with the first character set to lowercase, using the US-ASCII character set.
- since 4.05.0
The comparison function for byte sequences, with the same specification as Stdlib.compare
. Along with the type t
, this function compare
allows the module Bytes
to be passed as argument to the functors Set.Make
and Map.Make
.
Unsafe conversions (for advanced users)
This section describes unsafe, low-level conversion functions between bytes
and string
. They do not copy the internal data; used improperly, they can break the immutability invariant on strings provided by the -safe-string
option. They are available for expert library authors, but for most purposes you should use the always-correct to_string
and of_string
instead.
Unsafely convert a byte sequence into a string.
To reason about the use of unsafe_to_string
, it is convenient to consider an "ownership" discipline. A piece of code that manipulates some data "owns" it; there are several disjoint ownership modes, including:
- Unique ownership: the data may be accessed and mutated
- Shared ownership: the data has several owners, that may only access it, not mutate it.
Unique ownership is linear: passing the data to another piece of code means giving up ownership (we cannot write the data again). A unique owner may decide to make the data shared (giving up mutation rights on it), but shared data may not become uniquely-owned again.
unsafe_to_string s
can only be used when the caller owns the byte sequence s
-- either uniquely or as shared immutable data. The caller gives up ownership of s
, and gains ownership of the returned string.
There are two valid use-cases that respect this ownership discipline:
1. Creating a string by initializing and mutating a byte sequence that is never changed after initialization is performed.
let string_init len f : string =
let s = Bytes.create len in
for i = 0 to len - 1 do Bytes.set s i (f i) done;
Bytes.unsafe_to_string s
This function is safe because the byte sequence s
will never be accessed or mutated after unsafe_to_string
is called. The string_init
code gives up ownership of s
, and returns the ownership of the resulting string to its caller.
Note that it would be unsafe if s
was passed as an additional parameter to the function f
as it could escape this way and be mutated in the future -- string_init
would give up ownership of s
to pass it to f
, and could not call unsafe_to_string
safely.
We have provided the String.init
, String.map
and String.mapi
functions to cover most cases of building new strings. You should prefer those over to_string
or unsafe_to_string
whenever applicable.
2. Temporarily giving ownership of a byte sequence to a function that expects a uniquely owned string and returns ownership back, so that we can mutate the sequence again after the call ended.
let bytes_length (s : bytes) =
String.length (Bytes.unsafe_to_string s)
In this use-case, we do not promise that s
will never be mutated after the call to bytes_length s
. The String.length
function temporarily borrows unique ownership of the byte sequence (and sees it as a string
), but returns this ownership back to the caller, which may assume that s
is still a valid byte sequence after the call. Note that this is only correct because we know that String.length
does not capture its argument -- it could escape by a side-channel such as a memoization combinator.
The caller may not mutate s
while the string is borrowed (it has temporarily given up ownership). This affects concurrent programs, but also higher-order functions: if String.length
returned a closure to be called later, s
should not be mutated until this closure is fully applied