Legend:
Library
Module
Module type
Parameter
Class
Class type
First-in first-out queues.
This module implements queues (FIFOs), with in-place modification. See the example section below.
Unsynchronized accesses
Unsynchronized accesses to a queue may lead to an invalid queue state. Thus, concurrent accesses to queues must be synchronized (for instance with a Mutex.t).
type!'a t
The type of queues containing elements of type 'a.
transfer q1 q2 adds all of q1's elements at the end of the queue q2, then clears q1. It is equivalent to the sequence iter (fun x -> add x q2) q1; clear q1, but runs in constant time.
# let q = Queue.create ()
val q : '_weak1 Queue.t = <abstr>
# Queue.push 1 q; Queue.push 2 q; Queue.push 3 q
- : unit = ()
# Queue.length q
- : int = 3
# Queue.pop q
- : int = 1
# Queue.pop q
- : int = 2
# Queue.pop q
- : int = 3
# Queue.pop q
Exception: Stdlib.Queue.Empty.
Search Through a Graph
For a more elaborate example, a classic algorithmic use of queues is to implement a BFS (breadth-first search) through a graph.
type graph = {
edges: (int, int list) Hashtbl.t
}
(* Search in graph [g] using BFS, starting from node [start].
It returns the first node that satisfies [p], or [None] if
no node reachable from [start] satisfies [p].
*)
let search_for ~(g:graph) ~(start:int) (p:int -> bool) : int option =
let to_explore = Queue.create() in
let explored = Hashtbl.create 16 in
Queue.push start to_explore;
let rec loop () =
if Queue.is_empty to_explore then None
else
(* node to explore *)
let node = Queue.pop to_explore in
explore_node node
and explore_node node =
if not (Hashtbl.mem explored node) then (
if p node then Some node (* found *)
else (
Hashtbl.add explored node ();
let children =
Hashtbl.find_opt g.edges node
|> Option.value ~default:[]
in
List.iter (fun child -> Queue.push child to_explore) children;
loop()
)
) else loop()
in
loop()
(* a sample graph *)
let my_graph: graph =
let edges =
List.to_seq [
1, [2;3];
2, [10; 11];
3, [4;5];
5, [100];
11, [0; 20];
]
|> Hashtbl.of_seq
in {edges}
# search_for ~g:my_graph ~start:1 (fun x -> x = 30)
- : int option = None
# search_for ~g:my_graph ~start:1 (fun x -> x >= 15)
- : int option = Some 20
# search_for ~g:my_graph ~start:1 (fun x -> x >= 50)
- : int option = Some 100