package octez-libs
type scalar = scalar
Element of the native scalar field.
type 'a repr = 'a repr
Representation of values.
type 'a t = 'a t
Plompiler program.
val constant : Csir.Scalar.t -> scalar repr t
constant s
returns the constant value s
.
range_check ~nb_bits s
asserts that s
is in the range [0, 2^nb_bits).
val custom :
?qc:Csir.Scalar.t ->
?ql:Csir.Scalar.t ->
?qr:Csir.Scalar.t ->
?qo:Csir.Scalar.t ->
?qm:Csir.Scalar.t ->
?qx2b:Csir.Scalar.t ->
?qx5a:Csir.Scalar.t ->
scalar repr ->
scalar repr ->
scalar repr t
custom ~qc ~ql ~qr ~qo ~qm ~qx2b ~qx5a a b
returns a value c
for which the following arithmetic constraint is added: qc + ql * a + qr * b + qo * c + qm * a * b +
qx2b * b^2 + qx5a * a^5 = 0
Manually adding constraints can be error-prone. Handle with care.
val assert_custom :
?qc:Csir.Scalar.t ->
?ql:Csir.Scalar.t ->
?qr:Csir.Scalar.t ->
?qo:Csir.Scalar.t ->
?qm:Csir.Scalar.t ->
scalar repr ->
scalar repr ->
scalar repr ->
unit repr t
assert_custom ~qc ~ql ~qr ~qo ~qm a b c
asserts the following arithmetic constraint: qc + ql * a + qr * b + qo * c + qm * a * b +
qx2b * b^2 + qx5a * a^5 = 0
Manually adding constraints can be error-prone. Handle with care.
val add :
?qc:Csir.Scalar.t ->
?ql:Csir.Scalar.t ->
?qr:Csir.Scalar.t ->
scalar repr ->
scalar repr ->
scalar repr t
add ~qc ~ql ~qr a b
returns a value c
such that ql * a + qr * b + qc = c
.
val add_constant :
?ql:Csir.Scalar.t ->
Csir.Scalar.t ->
scalar repr ->
scalar repr t
add_constant ~ql k a
returns a value c
such that ql * a + k = c
.
mul ~qm a b
returns a value c
such that qm * a * b = c
.
div ~den_coeff a b
asserts b
is non-zero and returns a value c
such that a / (b * den_coeff) = c
.
is_zero a
returns a boolean c
representing whether a
is zero.
pow b e_bits
returns the value b^e
where e
is the number represented by the binary decomposition e_bits
.
val add_list :
?qc:Csir.Scalar.t ->
?coeffs:Csir.Scalar.t list ->
scalar list repr ->
scalar repr t
add_list ~qc ~coeffs l
returns the sum of the elements of l
weighted by coeffs
.
Note: if coeffs
is defined, it should be of the same length as l
.
mul_list l
returns the product of the elements of l
.
mul_by_constant k a
returns the value k * a
.
val is_eq_const : scalar repr -> Csir.Scalar.t -> bool repr t
is_eq_const a k
returns whether a
is equal to k
.
val assert_eq_const : scalar repr -> Csir.Scalar.t -> unit repr t
assert_eq_const a k
asserts that a
is equal to k
.
is_upper_bounded ~bound x
returns whether the scalar x
is strictly lower than bound
when x
is interpreted as an integer from 0
to p-1
(being p
the scalar field order). This circuit is total (and more expensive than our version below).
Same as is_upper_bounded
but cheaper and partial. is_upper_bounded_unsafe ~bound l
is unsatisfiable if l cannot be represented in binary with Z.numbits bound
bits.