= 1024" x-on:close-sidebar="sidebar=window.innerWidth >= 1024 && true">
Legend:
Library
Module
Module type
Parameter
Class
Class type
Library
Module
Module type
Parameter
Class
Class type
type t = Torch_core.Wrapper.Tensor.t
include module type of Torch_core.Wrapper.Tensor with type t := t
include Torch_core.Wrapper_generated_intf.S
with type t := t
and type 'a scalar := 'a Torch_core.Wrapper.Scalar.t
val __and__ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val __iand__ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val __ilshift__ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val __ior__ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val __irshift__ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val __ixor__ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val __lshift__ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val __or__ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val __rshift__ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val __xor__ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val _add_relu_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val _add_relu_scalar_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val _cudnn_init_dropout_state :
dropout:float ->
train:bool ->
dropout_seed:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val _cudnn_rnn :
t ->
weight:t list ->
weight_stride0:int ->
weight_buf:t option ->
hx:t ->
cx:t option ->
mode:int ->
hidden_size:int ->
proj_size:int ->
num_layers:int ->
batch_first:bool ->
dropout:float ->
train:bool ->
bidirectional:bool ->
batch_sizes:int list ->
dropout_state:t option ->
t * t * t * t * t
val _empty_affine_quantized :
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
scale:float ->
zero_point:int ->
t
val _empty_per_channel_affine_quantized :
size:int list ->
scales:t ->
zero_points:t ->
axis:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val _pad_packed_sequence :
data:t ->
batch_sizes:t ->
batch_first:bool ->
padding_value:'a Torch_core.Wrapper.Scalar.t ->
total_length:int ->
t * t
val _pin_memory : t -> device:Torch_core.Device.t -> t
val _rowwise_prune :
weight:t ->
mask:t ->
compressed_indices_dtype:Torch_core.Kind.packed ->
t * t
val _sobol_engine_draw :
quasi:t ->
n:int ->
sobolstate:t ->
dimension:int ->
num_generated:int ->
dtype:Torch_core.Kind.packed ->
t * t
val _sparse_coo_tensor_unsafe :
indices:t ->
values:t ->
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val _sparse_coo_tensor_with_dims :
sparse_dim:int ->
dense_dim:int ->
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val _sparse_coo_tensor_with_dims_and_tensors :
sparse_dim:int ->
dense_dim:int ->
size:int list ->
indices:t ->
values:t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val _sparse_csr_tensor_unsafe :
crow_indices:t ->
col_indices:t ->
values:t ->
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val _sparse_log_softmax_int : t -> dim:int -> dtype:Torch_core.Kind.packed -> t
val _sparse_softmax_int : t -> dim:int -> dtype:Torch_core.Kind.packed -> t
val _sparse_sum_dim_dtype :
t ->
dim:int list ->
dtype:Torch_core.Kind.packed ->
t
val _sparse_sum_dtype : t -> dtype:Torch_core.Kind.packed -> t
val _to_copy :
t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
non_blocking:bool ->
t
val add_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val add_scalar_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val arange :
end_:'a Torch_core.Wrapper.Scalar.t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val arange_out : out:t -> end_:'a Torch_core.Wrapper.Scalar.t -> t
val arange_start :
start:'a Torch_core.Wrapper.Scalar.t ->
end_:'a Torch_core.Wrapper.Scalar.t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val arange_start_out :
out:t ->
start:'a Torch_core.Wrapper.Scalar.t ->
end_:'a Torch_core.Wrapper.Scalar.t ->
t
val arange_start_step :
start:'a Torch_core.Wrapper.Scalar.t ->
end_:'a Torch_core.Wrapper.Scalar.t ->
step:'a Torch_core.Wrapper.Scalar.t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val bartlett_window :
window_length:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val bartlett_window_periodic :
window_length:int ->
periodic:bool ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val binary_cross_entropy :
t ->
target:t ->
weight:t option ->
reduction:Torch_core.Reduction.t ->
t
val bitwise_and : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val bitwise_and_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val bitwise_and_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val bitwise_left_shift_scalar_tensor : 'a Torch_core.Wrapper.Scalar.t -> t -> t
val bitwise_left_shift_tensor_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val bitwise_left_shift_tensor_scalar_ :
t ->
'a Torch_core.Wrapper.Scalar.t ->
t
val bitwise_left_shift_tensor_scalar_out :
out:t ->
t ->
'a Torch_core.Wrapper.Scalar.t ->
t
val bitwise_or : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val bitwise_or_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val bitwise_or_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val bitwise_right_shift_scalar_tensor :
'a Torch_core.Wrapper.Scalar.t ->
t ->
t
val bitwise_right_shift_tensor_scalar :
t ->
'a Torch_core.Wrapper.Scalar.t ->
t
val bitwise_right_shift_tensor_scalar_ :
t ->
'a Torch_core.Wrapper.Scalar.t ->
t
val bitwise_right_shift_tensor_scalar_out :
out:t ->
t ->
'a Torch_core.Wrapper.Scalar.t ->
t
val bitwise_xor : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val bitwise_xor_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val bitwise_xor_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val blackman_window :
window_length:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val blackman_window_periodic :
window_length:int ->
periodic:bool ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val bucketize_scalar :
'a Torch_core.Wrapper.Scalar.t ->
boundaries:t ->
out_int32:bool ->
right:bool ->
t
val clamp :
t ->
min:'a Torch_core.Wrapper.Scalar.t ->
max:'a Torch_core.Wrapper.Scalar.t ->
t
val clamp_ :
t ->
min:'a Torch_core.Wrapper.Scalar.t ->
max:'a Torch_core.Wrapper.Scalar.t ->
t
val clamp_max : t -> max:'a Torch_core.Wrapper.Scalar.t -> t
val clamp_max_ : t -> max:'a Torch_core.Wrapper.Scalar.t -> t
val clamp_max_out : out:t -> t -> max:'a Torch_core.Wrapper.Scalar.t -> t
val clamp_min : t -> min:'a Torch_core.Wrapper.Scalar.t -> t
val clamp_min_ : t -> min:'a Torch_core.Wrapper.Scalar.t -> t
val clamp_min_out : out:t -> t -> min:'a Torch_core.Wrapper.Scalar.t -> t
val clamp_out :
out:t ->
t ->
min:'a Torch_core.Wrapper.Scalar.t ->
max:'a Torch_core.Wrapper.Scalar.t ->
t
val clip :
t ->
min:'a Torch_core.Wrapper.Scalar.t ->
max:'a Torch_core.Wrapper.Scalar.t ->
t
val clip_ :
t ->
min:'a Torch_core.Wrapper.Scalar.t ->
max:'a Torch_core.Wrapper.Scalar.t ->
t
val clip_out :
out:t ->
t ->
min:'a Torch_core.Wrapper.Scalar.t ->
max:'a Torch_core.Wrapper.Scalar.t ->
t
val copysign_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val copysign_scalar_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val copysign_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val cosine_embedding_loss :
input1:t ->
input2:t ->
target:t ->
margin:float ->
reduction:Torch_core.Reduction.t ->
t
val cross_entropy_loss :
t ->
target:t ->
weight:t option ->
reduction:Torch_core.Reduction.t ->
ignore_index:int ->
label_smoothing:float ->
t
val ctc_loss :
log_probs:t ->
targets:t ->
input_lengths:int list ->
target_lengths:int list ->
blank:int ->
reduction:Torch_core.Reduction.t ->
zero_infinity:bool ->
t
val cumprod : t -> dim:int -> dtype:Torch_core.Kind.packed -> t
val cumprod_ : t -> dim:int -> dtype:Torch_core.Kind.packed -> t
val cumprod_out : out:t -> t -> dim:int -> dtype:Torch_core.Kind.packed -> t
val cumsum : t -> dim:int -> dtype:Torch_core.Kind.packed -> t
val cumsum_ : t -> dim:int -> dtype:Torch_core.Kind.packed -> t
val cumsum_out : out:t -> t -> dim:int -> dtype:Torch_core.Kind.packed -> t
val div_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val div_scalar_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val div_scalar_mode :
t ->
'a Torch_core.Wrapper.Scalar.t ->
rounding_mode:string ->
t
val div_scalar_mode_ :
t ->
'a Torch_core.Wrapper.Scalar.t ->
rounding_mode:string ->
t
val divide_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val divide_scalar_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val divide_scalar_mode :
t ->
'a Torch_core.Wrapper.Scalar.t ->
rounding_mode:string ->
t
val divide_scalar_mode_ :
t ->
'a Torch_core.Wrapper.Scalar.t ->
rounding_mode:string ->
t
val elu_backward :
grad_output:t ->
alpha:'a Torch_core.Wrapper.Scalar.t ->
scale:'a Torch_core.Wrapper.Scalar.t ->
input_scale:'a Torch_core.Wrapper.Scalar.t ->
is_result:bool ->
self_or_result:t ->
t
val elu_backward_grad_input :
grad_input:t ->
grad_output:t ->
alpha:'a Torch_core.Wrapper.Scalar.t ->
scale:'a Torch_core.Wrapper.Scalar.t ->
input_scale:'a Torch_core.Wrapper.Scalar.t ->
is_result:bool ->
self_or_result:t ->
t
val empty :
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val empty_quantized :
size:int list ->
qtensor:t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val empty_strided :
size:int list ->
stride:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val eq_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val eq_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val eye : n:int -> options:(Torch_core.Kind.packed * Torch_core.Device.t) -> t
val eye_m :
n:int ->
m:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val fbgemm_linear_int8_weight :
t ->
weight:t ->
packed:t ->
col_offsets:t ->
weight_scale:'a Torch_core.Wrapper.Scalar.t ->
weight_zero_point:'a Torch_core.Wrapper.Scalar.t ->
bias:t ->
t
val fbgemm_linear_int8_weight_fp32_activation :
t ->
weight:t ->
packed:t ->
col_offsets:t ->
weight_scale:'a Torch_core.Wrapper.Scalar.t ->
weight_zero_point:'a Torch_core.Wrapper.Scalar.t ->
bias:t ->
t
val fft_fftfreq :
n:int ->
d:float ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val fft_rfftfreq :
n:int ->
d:float ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val fill_ : t -> value:'a Torch_core.Wrapper.Scalar.t -> t
val fill_diagonal_ :
t ->
fill_value:'a Torch_core.Wrapper.Scalar.t ->
wrap:bool ->
t
val float_power_ : t -> exponent:'a Torch_core.Wrapper.Scalar.t -> t
val float_power_scalar : 'a Torch_core.Wrapper.Scalar.t -> exponent:t -> t
val float_power_scalar_out :
out:t ->
'a Torch_core.Wrapper.Scalar.t ->
exponent:t ->
t
val float_power_tensor_scalar :
t ->
exponent:'a Torch_core.Wrapper.Scalar.t ->
t
val float_power_tensor_scalar_out :
out:t ->
t ->
exponent:'a Torch_core.Wrapper.Scalar.t ->
t
val floor_divide_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val floor_divide_scalar_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val fmod : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val fmod_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val fmod_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val from_file :
filename:string ->
shared:bool ->
size:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val full :
size:int list ->
fill_value:'a Torch_core.Wrapper.Scalar.t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val full_like : t -> fill_value:'a Torch_core.Wrapper.Scalar.t -> t
val full_out :
out:t ->
size:int list ->
fill_value:'a Torch_core.Wrapper.Scalar.t ->
t
val ge : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val ge_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val ge_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val greater : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val greater_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val greater_equal : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val greater_equal_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val greater_equal_scalar_out :
out:t ->
t ->
'a Torch_core.Wrapper.Scalar.t ->
t
val greater_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val gt : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val gt_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val gt_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val hamming_window :
window_length:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val hamming_window_periodic :
window_length:int ->
periodic:bool ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val hamming_window_periodic_alpha :
window_length:int ->
periodic:bool ->
alpha:float ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val hamming_window_periodic_alpha_beta :
window_length:int ->
periodic:bool ->
alpha:float ->
beta:float ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val hann_window :
window_length:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val hann_window_periodic :
window_length:int ->
periodic:bool ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val hardshrink_backward :
grad_out:t ->
t ->
lambd:'a Torch_core.Wrapper.Scalar.t ->
t
val hardshrink_backward_grad_input :
grad_input:t ->
grad_out:t ->
t ->
lambd:'a Torch_core.Wrapper.Scalar.t ->
t
val hardtanh_backward :
grad_output:t ->
t ->
min_val:'a Torch_core.Wrapper.Scalar.t ->
max_val:'a Torch_core.Wrapper.Scalar.t ->
t
val hardtanh_backward_grad_input :
grad_input:t ->
grad_output:t ->
t ->
min_val:'a Torch_core.Wrapper.Scalar.t ->
max_val:'a Torch_core.Wrapper.Scalar.t ->
t
val hinge_embedding_loss :
t ->
target:t ->
margin:float ->
reduction:Torch_core.Reduction.t ->
t
val huber_loss_backward :
grad_output:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
delta:float ->
t
val huber_loss_out :
out:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
delta:float ->
t
val index_add_alpha :
t ->
dim:int ->
index:t ->
source:t ->
alpha:'a Torch_core.Wrapper.Scalar.t ->
t
val index_add_alpha_ :
t ->
dim:int ->
index:t ->
source:t ->
alpha:'a Torch_core.Wrapper.Scalar.t ->
t
val index_fill :
t ->
dim:int ->
index:t ->
value:'a Torch_core.Wrapper.Scalar.t ->
t
val index_fill_ :
t ->
dim:int ->
index:t ->
value:'a Torch_core.Wrapper.Scalar.t ->
t
val isin_scalar_tensor :
element:'a Torch_core.Wrapper.Scalar.t ->
test_elements:t ->
assume_unique:bool ->
invert:bool ->
t
val isin_scalar_tensor_out :
out:t ->
element:'a Torch_core.Wrapper.Scalar.t ->
test_elements:t ->
assume_unique:bool ->
invert:bool ->
t
val isin_tensor_scalar :
elements:t ->
test_element:'a Torch_core.Wrapper.Scalar.t ->
assume_unique:bool ->
invert:bool ->
t
val isin_tensor_scalar_out :
out:t ->
elements:t ->
test_element:'a Torch_core.Wrapper.Scalar.t ->
assume_unique:bool ->
invert:bool ->
t
val kaiser_window :
window_length:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val kaiser_window_beta :
window_length:int ->
periodic:bool ->
beta:float ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val kaiser_window_periodic :
window_length:int ->
periodic:bool ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val kl_div :
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
log_target:bool ->
t
val kl_div_backward :
grad_output:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
log_target:bool ->
t
val l1_loss : t -> target:t -> reduction:Torch_core.Reduction.t -> t
val l1_loss_backward :
grad_output:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
t
val l1_loss_out :
out:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
t
val le : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val le_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val le_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val leaky_relu_backward :
grad_output:t ->
t ->
negative_slope:'a Torch_core.Wrapper.Scalar.t ->
self_is_result:bool ->
t
val leaky_relu_backward_grad_input :
grad_input:t ->
grad_output:t ->
t ->
negative_slope:'a Torch_core.Wrapper.Scalar.t ->
self_is_result:bool ->
t
val lerp : t -> end_:t -> weight:'a Torch_core.Wrapper.Scalar.t -> t
val lerp_ : t -> end_:t -> weight:'a Torch_core.Wrapper.Scalar.t -> t
val lerp_scalar_out :
out:t ->
t ->
end_:t ->
weight:'a Torch_core.Wrapper.Scalar.t ->
t
val less : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val less_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val less_equal : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val less_equal_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val less_equal_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val less_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val linalg_cond : t -> p:'a Torch_core.Wrapper.Scalar.t -> t
val linalg_cond_out : out:t -> t -> p:'a Torch_core.Wrapper.Scalar.t -> t
val linspace :
start:'a Torch_core.Wrapper.Scalar.t ->
end_:'a Torch_core.Wrapper.Scalar.t ->
steps:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val linspace_out :
out:t ->
start:'a Torch_core.Wrapper.Scalar.t ->
end_:'a Torch_core.Wrapper.Scalar.t ->
steps:int ->
t
val log_softmax : t -> dim:int -> dtype:Torch_core.Kind.packed -> t
val logspace :
start:'a Torch_core.Wrapper.Scalar.t ->
end_:'a Torch_core.Wrapper.Scalar.t ->
steps:int ->
base:float ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val logspace_out :
out:t ->
start:'a Torch_core.Wrapper.Scalar.t ->
end_:'a Torch_core.Wrapper.Scalar.t ->
steps:int ->
base:float ->
t
val lt : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val lt_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val lt_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val margin_ranking_loss :
input1:t ->
input2:t ->
target:t ->
margin:float ->
reduction:Torch_core.Reduction.t ->
t
val masked_fill : t -> mask:t -> value:'a Torch_core.Wrapper.Scalar.t -> t
val masked_fill_ : t -> mask:t -> value:'a Torch_core.Wrapper.Scalar.t -> t
val mean_dim :
t ->
dim:int list ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val mean_out :
out:t ->
t ->
dim:int list ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val mse_loss_backward :
grad_output:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
t
val mse_loss_out :
out:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
t
val mul_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val mul_scalar_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val multi_margin_loss_backward :
grad_output:t ->
t ->
target:t ->
p:'a Torch_core.Wrapper.Scalar.t ->
margin:'a Torch_core.Wrapper.Scalar.t ->
weight:t option ->
reduction:Torch_core.Reduction.t ->
t
val multi_margin_loss_backward_grad_input :
grad_input:t ->
grad_output:t ->
t ->
target:t ->
p:'a Torch_core.Wrapper.Scalar.t ->
margin:'a Torch_core.Wrapper.Scalar.t ->
weight:t option ->
reduction:Torch_core.Reduction.t ->
t
val multilabel_margin_loss :
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
t
val multilabel_margin_loss_out :
out:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
t
val multiply_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val multiply_scalar_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val nanmean :
t ->
dim:int list ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val nanmean_out :
out:t ->
t ->
dim:int list ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val nansum : t -> dtype:Torch_core.Kind.packed -> t
val nansum_dim_intlist :
t ->
dim:int list ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val nansum_intlist_out :
out:t ->
t ->
dim:int list ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val native_norm_scalaropt_dim_dtype :
t ->
p:'a Torch_core.Wrapper.Scalar.t ->
dim:int list ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val ne : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val ne_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val ne_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val new_empty :
t ->
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val new_empty_strided :
t ->
size:int list ->
stride:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val new_full :
t ->
size:int list ->
fill_value:'a Torch_core.Wrapper.Scalar.t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val new_ones :
t ->
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val new_zeros :
t ->
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val nll_loss2d :
t ->
target:t ->
weight:t option ->
reduction:Torch_core.Reduction.t ->
ignore_index:int ->
t
val nll_loss_nd :
t ->
target:t ->
weight:t option ->
reduction:Torch_core.Reduction.t ->
ignore_index:int ->
t
val norm_dtype_out :
out:t ->
t ->
p:'a Torch_core.Wrapper.Scalar.t ->
dim:int list ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val norm_out :
out:t ->
t ->
p:'a Torch_core.Wrapper.Scalar.t ->
dim:int list ->
keepdim:bool ->
t
val norm_scalaropt_dim :
t ->
p:'a Torch_core.Wrapper.Scalar.t ->
dim:int list ->
keepdim:bool ->
t
val norm_scalaropt_dim_dtype :
t ->
p:'a Torch_core.Wrapper.Scalar.t ->
dim:int list ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val norm_scalaropt_dtype :
t ->
p:'a Torch_core.Wrapper.Scalar.t ->
dtype:Torch_core.Kind.packed ->
t
val not_equal : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val not_equal_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val not_equal_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val pin_memory : t -> device:Torch_core.Device.t -> t
val poisson_nll_loss :
t ->
target:t ->
log_input:bool ->
full:bool ->
eps:float ->
reduction:Torch_core.Reduction.t ->
t
val pow_ : t -> exponent:'a Torch_core.Wrapper.Scalar.t -> t
val pow_scalar : 'a Torch_core.Wrapper.Scalar.t -> exponent:t -> t
val pow_scalar_out : out:t -> 'a Torch_core.Wrapper.Scalar.t -> exponent:t -> t
val pow_tensor_scalar : t -> exponent:'a Torch_core.Wrapper.Scalar.t -> t
val pow_tensor_scalar_out :
out:t ->
t ->
exponent:'a Torch_core.Wrapper.Scalar.t ->
t
val prod : t -> dtype:Torch_core.Kind.packed -> t
val prod_dim_int :
t ->
dim:int ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val prod_int_out :
out:t ->
t ->
dim:int ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val quantize_per_channel :
t ->
scales:t ->
zero_points:t ->
axis:int ->
dtype:Torch_core.Kind.packed ->
t
val quantize_per_tensor :
t ->
scale:float ->
zero_point:int ->
dtype:Torch_core.Kind.packed ->
t
val quantize_per_tensor_tensor_qparams :
t ->
scale:t ->
zero_point:t ->
dtype:Torch_core.Kind.packed ->
t
val quantize_per_tensor_tensors :
t list ->
scales:t ->
zero_points:t ->
dtype:Torch_core.Kind.packed ->
t list
val quantized_gru_cell :
t ->
hx:t ->
w_ih:t ->
w_hh:t ->
b_ih:t ->
b_hh:t ->
packed_ih:t ->
packed_hh:t ->
col_offsets_ih:t ->
col_offsets_hh:t ->
scale_ih:'a Torch_core.Wrapper.Scalar.t ->
scale_hh:'a Torch_core.Wrapper.Scalar.t ->
zero_point_ih:'a Torch_core.Wrapper.Scalar.t ->
zero_point_hh:'a Torch_core.Wrapper.Scalar.t ->
t
val quantized_lstm_cell :
t ->
hx:t list ->
w_ih:t ->
w_hh:t ->
b_ih:t ->
b_hh:t ->
packed_ih:t ->
packed_hh:t ->
col_offsets_ih:t ->
col_offsets_hh:t ->
scale_ih:'a Torch_core.Wrapper.Scalar.t ->
scale_hh:'a Torch_core.Wrapper.Scalar.t ->
zero_point_ih:'a Torch_core.Wrapper.Scalar.t ->
zero_point_hh:'a Torch_core.Wrapper.Scalar.t ->
t * t
val quantized_rnn_relu_cell :
t ->
hx:t ->
w_ih:t ->
w_hh:t ->
b_ih:t ->
b_hh:t ->
packed_ih:t ->
packed_hh:t ->
col_offsets_ih:t ->
col_offsets_hh:t ->
scale_ih:'a Torch_core.Wrapper.Scalar.t ->
scale_hh:'a Torch_core.Wrapper.Scalar.t ->
zero_point_ih:'a Torch_core.Wrapper.Scalar.t ->
zero_point_hh:'a Torch_core.Wrapper.Scalar.t ->
t
val quantized_rnn_tanh_cell :
t ->
hx:t ->
w_ih:t ->
w_hh:t ->
b_ih:t ->
b_hh:t ->
packed_ih:t ->
packed_hh:t ->
col_offsets_ih:t ->
col_offsets_hh:t ->
scale_ih:'a Torch_core.Wrapper.Scalar.t ->
scale_hh:'a Torch_core.Wrapper.Scalar.t ->
zero_point_ih:'a Torch_core.Wrapper.Scalar.t ->
zero_point_hh:'a Torch_core.Wrapper.Scalar.t ->
t
val randint :
high:int ->
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val randint_low :
low:int ->
high:int ->
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val randperm :
n:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val range :
start:'a Torch_core.Wrapper.Scalar.t ->
end_:'a Torch_core.Wrapper.Scalar.t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val range_out :
out:t ->
start:'a Torch_core.Wrapper.Scalar.t ->
end_:'a Torch_core.Wrapper.Scalar.t ->
t
val range_step :
start:'a Torch_core.Wrapper.Scalar.t ->
end_:'a Torch_core.Wrapper.Scalar.t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val remainder : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val remainder_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val remainder_scalar_out : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val remainder_scalar_tensor : 'a Torch_core.Wrapper.Scalar.t -> t -> t
val renorm :
t ->
p:'a Torch_core.Wrapper.Scalar.t ->
dim:int ->
maxnorm:'a Torch_core.Wrapper.Scalar.t ->
t
val renorm_ :
t ->
p:'a Torch_core.Wrapper.Scalar.t ->
dim:int ->
maxnorm:'a Torch_core.Wrapper.Scalar.t ->
t
val renorm_out :
out:t ->
t ->
p:'a Torch_core.Wrapper.Scalar.t ->
dim:int ->
maxnorm:'a Torch_core.Wrapper.Scalar.t ->
t
val rrelu_with_noise_backward :
grad_output:t ->
t ->
noise:t ->
lower:'a Torch_core.Wrapper.Scalar.t ->
upper:'a Torch_core.Wrapper.Scalar.t ->
training:bool ->
self_is_result:bool ->
t
val rsub_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val scalar_tensor :
s:'a Torch_core.Wrapper.Scalar.t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val scatter_value :
t ->
dim:int ->
index:t ->
value:'a Torch_core.Wrapper.Scalar.t ->
t
val scatter_value_ :
t ->
dim:int ->
index:t ->
value:'a Torch_core.Wrapper.Scalar.t ->
t
val scatter_value_out :
out:t ->
t ->
dim:int ->
index:t ->
value:'a Torch_core.Wrapper.Scalar.t ->
t
val scatter_value_reduce :
t ->
dim:int ->
index:t ->
value:'a Torch_core.Wrapper.Scalar.t ->
reduce:string ->
t
val scatter_value_reduce_ :
t ->
dim:int ->
index:t ->
value:'a Torch_core.Wrapper.Scalar.t ->
reduce:string ->
t
val scatter_value_reduce_out :
out:t ->
t ->
dim:int ->
index:t ->
value:'a Torch_core.Wrapper.Scalar.t ->
reduce:string ->
t
val searchsorted_scalar :
sorted_sequence:t ->
'a Torch_core.Wrapper.Scalar.t ->
out_int32:bool ->
right:bool ->
t
val segment_reduce :
data:t ->
reduce:string ->
lengths:t option ->
indices:t option ->
axis:int ->
unsafe:bool ->
initial:'a Torch_core.Wrapper.Scalar.t ->
t
val smooth_l1_loss :
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
beta:float ->
t
val smooth_l1_loss_backward :
grad_output:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
beta:float ->
t
val smooth_l1_loss_out :
out:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
beta:float ->
t
val soft_margin_loss : t -> target:t -> reduction:Torch_core.Reduction.t -> t
val soft_margin_loss_backward :
grad_output:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
t
val soft_margin_loss_out :
out:t ->
t ->
target:t ->
reduction:Torch_core.Reduction.t ->
t
val softmax : t -> dim:int -> dtype:Torch_core.Kind.packed -> t
val softplus_backward :
grad_output:t ->
t ->
beta:'a Torch_core.Wrapper.Scalar.t ->
threshold:'a Torch_core.Wrapper.Scalar.t ->
output:t ->
t
val softplus_backward_grad_input :
grad_input:t ->
grad_output:t ->
t ->
beta:'a Torch_core.Wrapper.Scalar.t ->
threshold:'a Torch_core.Wrapper.Scalar.t ->
output:t ->
t
val softshrink_backward :
grad_output:t ->
t ->
lambd:'a Torch_core.Wrapper.Scalar.t ->
t
val softshrink_backward_grad_input :
grad_input:t ->
grad_output:t ->
t ->
lambd:'a Torch_core.Wrapper.Scalar.t ->
t
val sparse_coo_tensor :
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val sparse_coo_tensor_indices :
indices:t ->
values:t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val sparse_coo_tensor_indices_size :
indices:t ->
values:t ->
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val sparse_csr_tensor :
crow_indices:t ->
col_indices:t ->
values:t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val sparse_csr_tensor_crow_col_value_size :
crow_indices:t ->
col_indices:t ->
values:t ->
size:int list ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val special_log_softmax : t -> dim:int -> dtype:Torch_core.Kind.packed -> t
val special_xlog1py_other_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val special_xlog1py_other_scalar_out :
out:t ->
t ->
'a Torch_core.Wrapper.Scalar.t ->
t
val special_xlog1py_self_scalar : 'a Torch_core.Wrapper.Scalar.t -> t -> t
val special_xlog1py_self_scalar_out :
out:t ->
'a Torch_core.Wrapper.Scalar.t ->
t ->
t
val special_xlogy_other_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val special_xlogy_other_scalar_out :
out:t ->
t ->
'a Torch_core.Wrapper.Scalar.t ->
t
val special_xlogy_self_scalar : 'a Torch_core.Wrapper.Scalar.t -> t -> t
val special_xlogy_self_scalar_out :
out:t ->
'a Torch_core.Wrapper.Scalar.t ->
t ->
t
val special_zeta_other_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val special_zeta_other_scalar_out :
out:t ->
t ->
'a Torch_core.Wrapper.Scalar.t ->
t
val special_zeta_self_scalar : 'a Torch_core.Wrapper.Scalar.t -> t -> t
val special_zeta_self_scalar_out :
out:t ->
'a Torch_core.Wrapper.Scalar.t ->
t ->
t
val sub_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val sub_scalar_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val subtract_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val subtract_scalar_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val sum_dim_intlist :
t ->
dim:int list ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val sum_intlist_out :
out:t ->
t ->
dim:int list ->
keepdim:bool ->
dtype:Torch_core.Kind.packed ->
t
val threshold :
t ->
threshold:'a Torch_core.Wrapper.Scalar.t ->
value:'a Torch_core.Wrapper.Scalar.t ->
t
val threshold_ :
t ->
threshold:'a Torch_core.Wrapper.Scalar.t ->
value:'a Torch_core.Wrapper.Scalar.t ->
t
val threshold_backward :
grad_output:t ->
t ->
threshold:'a Torch_core.Wrapper.Scalar.t ->
t
val threshold_backward_grad_input :
grad_input:t ->
grad_output:t ->
t ->
threshold:'a Torch_core.Wrapper.Scalar.t ->
t
val threshold_out :
out:t ->
t ->
threshold:'a Torch_core.Wrapper.Scalar.t ->
value:'a Torch_core.Wrapper.Scalar.t ->
t
val to_ : t -> device:Torch_core.Device.t -> t
val to_dense : t -> dtype:Torch_core.Kind.packed -> t
val to_dtype :
t ->
dtype:Torch_core.Kind.packed ->
non_blocking:bool ->
copy:bool ->
t
val to_dtype_layout :
t ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
non_blocking:bool ->
copy:bool ->
t
val to_mkldnn : t -> dtype:Torch_core.Kind.packed -> t
val totype : t -> scalar_type:Torch_core.Kind.packed -> t
val tril_indices :
row:int ->
col:int ->
offset:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val triplet_margin_loss :
anchor:t ->
positive:t ->
negative:t ->
margin:float ->
p:float ->
eps:float ->
swap:bool ->
reduction:Torch_core.Reduction.t ->
t
val triu_indices :
row:int ->
col:int ->
offset:int ->
options:(Torch_core.Kind.packed * Torch_core.Device.t) ->
t
val true_divide_scalar : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val true_divide_scalar_ : t -> 'a Torch_core.Wrapper.Scalar.t -> t
val view_dtype : t -> dtype:Torch_core.Kind.packed -> t
val where_scalar :
condition:t ->
'a Torch_core.Wrapper.Scalar.t ->
'a Torch_core.Wrapper.Scalar.t ->
t
val where_scalarother : condition:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val where_scalarself : condition:t -> 'a Torch_core.Wrapper.Scalar.t -> t -> t
val xlogy_outscalar_other : out:t -> t -> 'a Torch_core.Wrapper.Scalar.t -> t
val xlogy_outscalar_self : out:t -> 'a Torch_core.Wrapper.Scalar.t -> t -> t