= 1024" x-on:close-sidebar="sidebar=window.innerWidth >= 1024 && true">
side menu
include Wrapper_generated_intf.S
with type t := t
and type 'a scalar := 'a Scalar.t
val __and__tensor_ : t -> t -> t
val __iand__tensor_ : t -> t -> t
val __ilshift__tensor_ : t -> t -> t
val __ior__tensor_ : t -> t -> t
val __irshift__tensor_ : t -> t -> t
val __ixor__tensor_ : t -> t -> t
val __lshift__tensor_ : t -> t -> t
val __or__tensor_ : t -> t -> t
val __rshift__tensor_ : t -> t -> t
val __xor__tensor_ : t -> t -> t
val _adaptive_avg_pool2d : t -> output_size:int list -> t
val _adaptive_avg_pool2d_backward : grad_output:t -> t -> t
val _adaptive_avg_pool3d : t -> output_size:int list -> t
val _adaptive_avg_pool3d_backward : grad_output:t -> t -> t
val _add_batch_dim : t -> batch_dim:int -> level:int -> t
val _add_relu : t -> t -> t
val _add_relu_ : t -> t -> t
val _add_relu_out : out:t -> t -> t -> t
val _aminmax : t -> t * t
val _aminmax_dim : t -> dim:int -> keepdim:bool -> t * t
val _amp_update_scale_ :
t ->
growth_tracker:t ->
found_inf:t ->
scale_growth_factor:float ->
scale_backoff_factor:float ->
growth_interval:int ->
t
val _baddbmm_mkl_ : t -> batch1:t -> batch2:t -> t
val _cast_byte : t -> non_blocking:bool -> t
val _cast_char : t -> non_blocking:bool -> t
val _cast_double : t -> non_blocking:bool -> t
val _cast_float : t -> non_blocking:bool -> t
val _cast_half : t -> non_blocking:bool -> t
val _cast_int : t -> non_blocking:bool -> t
val _cast_long : t -> non_blocking:bool -> t
val _cast_short : t -> non_blocking:bool -> t
val _cat : t list -> dim:int -> t
val _cat_out : out:t -> t list -> dim:int -> t
val _cdist_backward : grad:t -> x1:t -> x2:t -> p:float -> cdist:t -> t
val _cholesky_solve_helper : t -> a:t -> upper:bool -> t
val _coalesced_ : t -> coalesced:bool -> t
val _compute_linear_combination : t -> coefficients:t -> t
val _compute_linear_combination_out : out:t -> t -> coefficients:t -> t
val _conj_physical : t -> t
val _conv_depthwise2d :
t ->
weight:t ->
kernel_size:int list ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
t
val _conv_depthwise2d_backward :
grad_input:t ->
grad_weight:t ->
grad_output:t ->
t ->
weight:t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
t * t
val _conv_depthwise2d_out :
out:t ->
t ->
weight:t ->
kernel_size:int list ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
t
val _convert_indices_from_coo_to_csr : t -> size:int -> out_int32:bool -> t
val _convert_indices_from_coo_to_csr_out :
out:t ->
t ->
size:int ->
out_int32:bool ->
t
val _convolution :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
transposed:bool ->
output_padding:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
cudnn_enabled:bool ->
allow_tf32:bool ->
t
val _convolution_deprecated :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
transposed:bool ->
output_padding:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
cudnn_enabled:bool ->
t
val _convolution_mode :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:string ->
dilation:int list ->
groups:int ->
t
val _convolution_nogroup :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
transposed:bool ->
output_padding:int list ->
t
val _copy_from : t -> dst:t -> non_blocking:bool -> t
val _copy_from_and_resize : t -> dst:t -> t
val _ctc_loss :
log_probs:t ->
targets:t ->
input_lengths:int list ->
target_lengths:int list ->
blank:int ->
zero_infinity:bool ->
t * t
val _ctc_loss_backward :
grad:t ->
log_probs:t ->
targets:t ->
input_lengths:int list ->
target_lengths:int list ->
neg_log_likelihood:t ->
log_alpha:t ->
blank:int ->
zero_infinity:bool ->
t
val _cudnn_ctc_loss :
log_probs:t ->
targets:t ->
input_lengths:int list ->
target_lengths:int list ->
blank:int ->
deterministic:bool ->
zero_infinity:bool ->
t * t
val _cudnn_init_dropout_state :
dropout:float ->
train:bool ->
dropout_seed:int ->
options:(Kind.packed * Device.t ) ->
t
val _cudnn_rnn :
t ->
weight:t list ->
weight_stride0:int ->
weight_buf:t option ->
hx:t ->
cx:t option ->
mode:int ->
hidden_size:int ->
proj_size:int ->
num_layers:int ->
batch_first:bool ->
dropout:float ->
train:bool ->
bidirectional:bool ->
batch_sizes:int list ->
dropout_state:t option ->
t * t * t * t * t
val _cudnn_rnn_flatten_weight :
weight_arr:t list ->
weight_stride0:int ->
input_size:int ->
mode:int ->
hidden_size:int ->
proj_size:int ->
num_layers:int ->
batch_first:bool ->
bidirectional:bool ->
t
val _det_lu_based_helper : t -> t * t * t
val _det_lu_based_helper_backward_helper :
det_grad:t ->
det:t ->
t ->
lu:t ->
pivs:t ->
t
val _dim_arange : like:t -> dim:int -> t
val _dirichlet_grad : x:t -> alpha:t -> total:t -> t
val _embedding_bag :
weight:t ->
indices:t ->
offsets:t ->
scale_grad_by_freq:bool ->
mode:int ->
sparse:bool ->
per_sample_weights:t option ->
include_last_offset:bool ->
padding_idx:int ->
t * t * t * t
val _embedding_bag_backward :
grad:t ->
indices:t ->
offsets:t ->
offset2bag:t ->
bag_size:t ->
maximum_indices:t ->
num_weights:int ->
scale_grad_by_freq:bool ->
mode:int ->
sparse:bool ->
per_sample_weights:t option ->
padding_idx:int ->
t
val _embedding_bag_dense_backward :
grad:t ->
indices:t ->
offset2bag:t ->
bag_size:t ->
maximum_indices:t ->
num_weights:int ->
scale_grad_by_freq:bool ->
mode:int ->
per_sample_weights:t option ->
padding_idx:int ->
t
val _embedding_bag_forward_only :
weight:t ->
indices:t ->
offsets:t ->
scale_grad_by_freq:bool ->
mode:int ->
sparse:bool ->
per_sample_weights:t option ->
include_last_offset:bool ->
padding_idx:int ->
t * t * t * t
val _embedding_bag_per_sample_weights_backward :
grad:t ->
weight:t ->
indices:t ->
offsets:t ->
offset2bag:t ->
mode:int ->
padding_idx:int ->
t
val _embedding_bag_sparse_backward :
grad:t ->
indices:t ->
offsets:t ->
offset2bag:t ->
bag_size:t ->
num_weights:int ->
scale_grad_by_freq:bool ->
mode:int ->
per_sample_weights:t option ->
padding_idx:int ->
t
val _empty_affine_quantized :
size:int list ->
options:(Kind.packed * Device.t ) ->
scale:float ->
zero_point:int ->
t
val _empty_per_channel_affine_quantized :
size:int list ->
scales:t ->
zero_points:t ->
axis:int ->
options:(Kind.packed * Device.t ) ->
t
val _euclidean_dist : x1:t -> x2:t -> t
val _fake_quantize_learnable_per_channel_affine :
t ->
scale:t ->
zero_point:t ->
axis:int ->
quant_min:int ->
quant_max:int ->
grad_factor:float ->
t
val _fake_quantize_learnable_per_channel_affine_backward :
grad:t ->
t ->
scale:t ->
zero_point:t ->
axis:int ->
quant_min:int ->
quant_max:int ->
grad_factor:float ->
t * t * t
val _fake_quantize_learnable_per_tensor_affine :
t ->
scale:t ->
zero_point:t ->
quant_min:int ->
quant_max:int ->
grad_factor:float ->
t
val _fake_quantize_learnable_per_tensor_affine_backward :
grad:t ->
t ->
scale:t ->
zero_point:t ->
quant_min:int ->
quant_max:int ->
grad_factor:float ->
t * t * t
val _fake_quantize_per_tensor_affine_cachemask_tensor_qparams :
t ->
scale:t ->
zero_point:t ->
fake_quant_enabled:t ->
quant_min:int ->
quant_max:int ->
t * t
val _fft_c2c : t -> dim:int list -> normalization:int -> forward:bool -> t
val _fft_c2c_out :
out:t ->
t ->
dim:int list ->
normalization:int ->
forward:bool ->
t
val _fft_c2r : t -> dim:int list -> normalization:int -> last_dim_size:int -> t
val _fft_c2r_out :
out:t ->
t ->
dim:int list ->
normalization:int ->
last_dim_size:int ->
t
val _fft_r2c : t -> dim:int list -> normalization:int -> onesided:bool -> t
val _fft_r2c_out :
out:t ->
t ->
dim:int list ->
normalization:int ->
onesided:bool ->
t
val _fused_dropout : t -> p:float -> t * t
val _fused_moving_avg_obs_fq_helper :
t ->
observer_on:t ->
fake_quant_on:t ->
running_min:t ->
running_max:t ->
scale:t ->
zero_point:t ->
averaging_const:float ->
quant_min:int ->
quant_max:int ->
ch_axis:int ->
per_row_fake_quant:bool ->
symmetric_quant:bool ->
t * t
val _fw_primal : t -> level:int -> t
val _gather_sparse_backward : t -> dim:int -> index:t -> grad:t -> t
val _grid_sampler_2d_cpu_fallback :
t ->
grid:t ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
t
val _grid_sampler_2d_cpu_fallback_backward :
grad_output:t ->
t ->
grid:t ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
t * t
val _index_copy_ : t -> dim:int -> index:t -> source:t -> t
val _index_put_impl_ :
t ->
indices:t option list ->
values:t ->
accumulate:bool ->
unsafe:bool ->
t
val _inverse_helper : t -> t
val _linalg_inv_out_helper_ : t -> infos_lu:t -> infos_getri:t -> t
val _linalg_qr_helper : t -> mode:string -> t * t
val _log_softmax : t -> dim:int -> half_to_float:bool -> t
val _log_softmax_backward_data : grad_output:t -> output:t -> dim:int -> t -> t
val _log_softmax_backward_data_out :
out:t ->
grad_output:t ->
output:t ->
dim:int ->
t ->
t
val _log_softmax_out : out:t -> t -> dim:int -> half_to_float:bool -> t
val _logcumsumexp : t -> dim:int -> t
val _logcumsumexp_out : out:t -> t -> dim:int -> t
val _lu_with_info : t -> pivot:bool -> check_errors:bool -> t * t * t
val _make_dual : primal:t -> tangent:t -> level:int -> t
val _make_per_channel_quantized_tensor :
t ->
scale:t ->
zero_point:t ->
axis:int ->
t
val _make_per_tensor_quantized_tensor : t -> scale:float -> zero_point:int -> t
val _masked_scale : t -> mask:t -> scale:float -> t
val _mkldnn_reshape : t -> shape:int list -> t
val _mkldnn_transpose : t -> dim0:int -> dim1:int -> t
val _mkldnn_transpose_ : t -> dim0:int -> dim1:int -> t
val _nnpack_spatial_convolution :
t ->
weight:t ->
bias:t option ->
padding:int list ->
stride:int list ->
t
val _nnpack_spatial_convolution_backward_weight :
t ->
weightsize:int list ->
grad_output:t ->
padding:int list ->
t
val _pack_padded_sequence : t -> lengths:t -> batch_first:bool -> t * t
val _pack_padded_sequence_backward :
grad:t ->
input_size:int list ->
batch_sizes:t ->
batch_first:bool ->
t
val _pad_packed_sequence :
data:t ->
batch_sizes:t ->
batch_first:bool ->
padding_value:'a Scalar.t ->
total_length:int ->
t * t
val _pdist_backward : grad:t -> t -> p:float -> pdist:t -> t
val _remove_batch_dim : t -> level:int -> batch_size:int -> out_dim:int -> t
val _reshape_alias : t -> size:int list -> stride:int list -> t
val _reshape_from_tensor : t -> shape:t -> t
val _rowwise_prune :
weight:t ->
mask:t ->
compressed_indices_dtype:Kind.packed ->
t * t
val _s_where : condition:t -> t -> t -> t
val _sample_dirichlet : t -> t
val _saturate_weight_to_fp16 : weight:t -> t
val _segment_reduce_backward :
grad:t ->
output:t ->
data:t ->
reduce:string ->
lengths:t option ->
axis:int ->
t
val _shape_as_tensor : t -> t
val _sobol_engine_draw :
quasi:t ->
n:int ->
sobolstate:t ->
dimension:int ->
num_generated:int ->
dtype:Kind.packed ->
t * t
val _sobol_engine_ff_ :
t ->
n:int ->
sobolstate:t ->
dimension:int ->
num_generated:int ->
t
val _sobol_engine_initialize_state_ : t -> dimension:int -> t
val _sobol_engine_scramble_ : t -> ltm:t -> dimension:int -> t
val _softmax : t -> dim:int -> half_to_float:bool -> t
val _softmax_backward_data : grad_output:t -> output:t -> dim:int -> t -> t
val _softmax_backward_data_out :
grad_input:t ->
grad_output:t ->
output:t ->
dim:int ->
t ->
t
val _softmax_out : out:t -> t -> dim:int -> half_to_float:bool -> t
val _solve_helper : t -> a:t -> t * t
val _sparse_addmm : t -> sparse:t -> dense:t -> t
val _sparse_coo_tensor_unsafe :
indices:t ->
values:t ->
size:int list ->
options:(Kind.packed * Device.t ) ->
t
val _sparse_coo_tensor_with_dims :
sparse_dim:int ->
dense_dim:int ->
size:int list ->
options:(Kind.packed * Device.t ) ->
t
val _sparse_coo_tensor_with_dims_and_tensors :
sparse_dim:int ->
dense_dim:int ->
size:int list ->
indices:t ->
values:t ->
options:(Kind.packed * Device.t ) ->
t
val _sparse_csr_tensor_unsafe :
crow_indices:t ->
col_indices:t ->
values:t ->
size:int list ->
options:(Kind.packed * Device.t ) ->
t
val _sparse_log_softmax : t -> dim:int -> half_to_float:bool -> t
val _sparse_log_softmax_backward_data :
grad_output:t ->
output:t ->
dim:int ->
t ->
t
val _sparse_log_softmax_int : t -> dim:int -> dtype:Kind.packed -> t
val _sparse_mask_helper : tr:t -> mask_indices:t -> t
val _sparse_mm : sparse:t -> dense:t -> t
val _sparse_softmax : t -> dim:int -> half_to_float:bool -> t
val _sparse_softmax_backward_data :
grad_output:t ->
output:t ->
dim:int ->
t ->
t
val _sparse_sparse_matmul : t -> t -> t
val _sparse_sum_backward : grad:t -> t -> dim:int list -> t
val _sparse_sum_dim : t -> dim:int list -> t
val _sparse_sum_dim_dtype : t -> dim:int list -> dtype:Kind.packed -> t
val _stack : t list -> dim:int -> t
val _stack_out : out:t -> t list -> dim:int -> t
val _standard_gamma : t -> t
val _standard_gamma_grad : t -> output:t -> t
val _svd_helper : t -> some:bool -> compute_uv:bool -> t * t * t
val _symeig_helper : t -> eigenvectors:bool -> upper:bool -> t * t
val _test_ambiguous_defaults : dummy:t -> a:int -> b:int -> t
val _test_ambiguous_defaults_b : dummy:t -> a:int -> b:string -> t
val _test_optional_filled_intlist : values:t -> addends:int list -> t
val _test_optional_intlist : values:t -> addends:int list -> t
val _test_serialization_subcmul : t -> t -> t
val _test_string_default : dummy:t -> a:string -> b:string -> t
val _thnn_differentiable_gru_cell_backward :
grad_hy:t ->
input_gates:t ->
hidden_gates:t ->
hx:t ->
input_bias:t option ->
hidden_bias:t option ->
t * t * t * t * t
val _thnn_differentiable_lstm_cell_backward :
grad_hy:t option ->
grad_cy:t option ->
input_gates:t ->
hidden_gates:t ->
input_bias:t option ->
hidden_bias:t option ->
cx:t ->
cy:t ->
t * t * t * t * t
val _thnn_fused_gru_cell :
input_gates:t ->
hidden_gates:t ->
hx:t ->
input_bias:t option ->
hidden_bias:t option ->
t * t
val _thnn_fused_gru_cell_backward :
grad_hy:t ->
workspace:t ->
has_bias:bool ->
t * t * t * t * t
val _thnn_fused_lstm_cell :
input_gates:t ->
hidden_gates:t ->
cx:t ->
input_bias:t option ->
hidden_bias:t option ->
t * t * t
val _thnn_fused_lstm_cell_backward :
grad_hy:t option ->
grad_cy:t option ->
cx:t ->
cy:t ->
workspace:t ->
has_bias:bool ->
t * t * t * t * t
val _to_cpu : t list -> t list
val _trilinear :
i1:t ->
i2:t ->
i3:t ->
expand1:int list ->
expand2:int list ->
expand3:int list ->
sumdim:int list ->
unroll_dim:int ->
t
val _unique : t -> sorted:bool -> return_inverse:bool -> t * t
val _unique2 :
t ->
sorted:bool ->
return_inverse:bool ->
return_counts:bool ->
t * t * t
val _unpack_dual : dual:t -> level:int -> t * t
val _unsafe_view : t -> size:int list -> t
val _weight_norm : v:t -> g:t -> dim:int -> t
val _weight_norm_cuda_interface : v:t -> g:t -> dim:int -> t * t
val _weight_norm_cuda_interface_backward :
grad_w:t ->
saved_v:t ->
saved_g:t ->
saved_norms:t ->
dim:int ->
t * t
val _weight_norm_differentiable_backward :
grad_w:t ->
saved_v:t ->
saved_g:t ->
saved_norms:t ->
dim:int ->
t * t
val abs_out : out:t -> t -> t
val absolute_out : out:t -> t -> t
val acos_out : out:t -> t -> t
val acosh_out : out:t -> t -> t
val adaptive_avg_pool1d : t -> output_size:int list -> t
val adaptive_avg_pool2d : t -> output_size:int list -> t
val adaptive_avg_pool2d_out : out:t -> t -> output_size:int list -> t
val adaptive_avg_pool3d : t -> output_size:int list -> t
val adaptive_avg_pool3d_backward : grad_input:t -> grad_output:t -> t -> t
val adaptive_avg_pool3d_out : out:t -> t -> output_size:int list -> t
val adaptive_max_pool1d : t -> output_size:int list -> t * t
val adaptive_max_pool2d : t -> output_size:int list -> t * t
val adaptive_max_pool2d_backward : grad_output:t -> t -> indices:t -> t
val adaptive_max_pool2d_out :
out:t ->
indices:t ->
t ->
output_size:int list ->
t * t
val adaptive_max_pool3d : t -> output_size:int list -> t * t
val adaptive_max_pool3d_backward : grad_output:t -> t -> indices:t -> t
val adaptive_max_pool3d_out :
out:t ->
indices:t ->
t ->
output_size:int list ->
t * t
val add_out : out:t -> t -> t -> t
val addbmm : t -> batch1:t -> batch2:t -> t
val addbmm_ : t -> batch1:t -> batch2:t -> t
val addbmm_out : out:t -> t -> batch1:t -> batch2:t -> t
val addcdiv : t -> tensor1:t -> tensor2:t -> t
val addcdiv_ : t -> tensor1:t -> tensor2:t -> t
val addcdiv_out : out:t -> t -> tensor1:t -> tensor2:t -> t
val addcmul : t -> tensor1:t -> tensor2:t -> t
val addcmul_ : t -> tensor1:t -> tensor2:t -> t
val addcmul_out : out:t -> t -> tensor1:t -> tensor2:t -> t
val addmm : t -> mat1:t -> mat2:t -> t
val addmm_ : t -> mat1:t -> mat2:t -> t
val addmm_out : out:t -> t -> mat1:t -> mat2:t -> t
val addmv : t -> mat:t -> vec:t -> t
val addmv_ : t -> mat:t -> vec:t -> t
val addmv_out : out:t -> t -> mat:t -> vec:t -> t
val addr : t -> vec1:t -> vec2:t -> t
val addr_ : t -> vec1:t -> vec2:t -> t
val addr_out : out:t -> t -> vec1:t -> vec2:t -> t
val affine_grid_generator : theta:t -> size:int list -> align_corners:bool -> t
val affine_grid_generator_backward :
grad:t ->
size:int list ->
align_corners:bool ->
t
val align_as : t -> t -> t
val align_tensors : t list -> t list
val all_all_out : out:t -> t -> t
val all_dim : t -> dim:int -> keepdim:bool -> t
val all_out : out:t -> t -> dim:int -> keepdim:bool -> t
val alpha_dropout : t -> p:float -> train:bool -> t
val alpha_dropout_ : t -> p:float -> train:bool -> t
val amax : t -> dim:int list -> keepdim:bool -> t
val amax_out : out:t -> t -> dim:int list -> keepdim:bool -> t
val amin : t -> dim:int list -> keepdim:bool -> t
val amin_out : out:t -> t -> dim:int list -> keepdim:bool -> t
val aminmax : t -> dim:int -> keepdim:bool -> t * t
val aminmax_out : min:t -> max:t -> t -> dim:int -> keepdim:bool -> t * t
val angle_out : out:t -> t -> t
val any_all_out : out:t -> t -> t
val any_dim : t -> dim:int -> keepdim:bool -> t
val any_out : out:t -> t -> dim:int -> keepdim:bool -> t
val arccos_out : out:t -> t -> t
val arccosh_out : out:t -> t -> t
val arcsin_out : out:t -> t -> t
val arcsinh_out : out:t -> t -> t
val arctan_out : out:t -> t -> t
val arctanh_out : out:t -> t -> t
val argmax_out : out:t -> t -> dim:int -> keepdim:bool -> t
val argmin : t -> dim:int -> keepdim:bool -> t
val argmin_out : out:t -> t -> dim:int -> keepdim:bool -> t
val argsort : t -> dim:int -> descending:bool -> t
val as_strided :
t ->
size:int list ->
stride:int list ->
storage_offset:int ->
t
val as_strided_ :
t ->
size:int list ->
stride:int list ->
storage_offset:int ->
t
val asin_out : out:t -> t -> t
val asinh_out : out:t -> t -> t
val atan2_out : out:t -> t -> t -> t
val atan_out : out:t -> t -> t
val atanh_out : out:t -> t -> t
val atleast_1d_sequence : t list -> t list
val atleast_2d_sequence : t list -> t list
val atleast_3d_sequence : t list -> t list
val avg_pool1d :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
t
val avg_pool2d :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
t
val avg_pool2d_backward :
grad_output:t ->
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
t
val avg_pool2d_out :
out:t ->
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
t
val avg_pool3d :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
t
val avg_pool3d_backward :
grad_output:t ->
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
t
val avg_pool3d_out :
out:t ->
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
t
val baddbmm : t -> batch1:t -> batch2:t -> t
val baddbmm_ : t -> batch1:t -> batch2:t -> t
val baddbmm_out : out:t -> t -> batch1:t -> batch2:t -> t
val bartlett_window_periodic :
window_length:int ->
periodic:bool ->
options:(Kind.packed * Device.t ) ->
t
val batch_norm :
t ->
weight:t option ->
bias:t option ->
running_mean:t option ->
running_var:t option ->
training:bool ->
momentum:float ->
eps:float ->
cudnn_enabled:bool ->
t
val batch_norm_backward_elemt :
grad_out:t ->
t ->
mean:t ->
invstd:t ->
weight:t option ->
mean_dy:t ->
mean_dy_xmu:t ->
count:t ->
t
val batch_norm_backward_reduce :
grad_out:t ->
t ->
mean:t ->
invstd:t ->
weight:t option ->
input_g:bool ->
weight_g:bool ->
bias_g:bool ->
t * t * t * t
val batch_norm_elemt :
t ->
weight:t option ->
bias:t option ->
mean:t ->
invstd:t ->
eps:float ->
t
val batch_norm_elemt_out :
out:t ->
t ->
weight:t option ->
bias:t option ->
mean:t ->
invstd:t ->
eps:float ->
t
val batch_norm_gather_stats :
t ->
mean:t ->
invstd:t ->
running_mean:t option ->
running_var:t option ->
momentum:float ->
eps:float ->
count:int ->
t * t
val batch_norm_gather_stats_with_counts :
t ->
mean:t ->
invstd:t ->
running_mean:t option ->
running_var:t option ->
momentum:float ->
eps:float ->
counts:t ->
t * t
val batch_norm_stats : t -> eps:float -> t * t
val batch_norm_update_stats :
t ->
running_mean:t option ->
running_var:t option ->
momentum:float ->
t * t
val bernoulli_ : t -> p:t -> t
val bernoulli_float_ : t -> p:float -> t
val bernoulli_out : out:t -> t -> t
val bernoulli_p : t -> p:float -> t
val bilinear : input1:t -> input2:t -> weight:t -> bias:t option -> t
val binary_cross_entropy :
t ->
target:t ->
weight:t option ->
reduction:Reduction.t ->
t
val binary_cross_entropy_backward :
grad_output:t ->
t ->
target:t ->
weight:t option ->
reduction:Reduction.t ->
t
val binary_cross_entropy_out :
out:t ->
t ->
target:t ->
weight:t option ->
reduction:Reduction.t ->
t
val binary_cross_entropy_with_logits :
t ->
target:t ->
weight:t option ->
pos_weight:t option ->
reduction:Reduction.t ->
t
val binary_cross_entropy_with_logits_backward :
grad_output:t ->
t ->
target:t ->
weight:t option ->
pos_weight:t option ->
reduction:Reduction.t ->
t
val bincount : t -> weights:t option -> minlength:int -> t
val binomial : count:t -> prob:t -> t
val bitwise_and_scalar_out : out:t -> t -> 'a Scalar.t -> t
val bitwise_and_tensor : t -> t -> t
val bitwise_and_tensor_ : t -> t -> t
val bitwise_and_tensor_out : out:t -> t -> t -> t
val bitwise_left_shift : t -> t -> t
val bitwise_left_shift_ : t -> t -> t
val bitwise_left_shift_scalar_tensor : 'a Scalar.t -> t -> t
val bitwise_left_shift_tensor_out : out:t -> t -> t -> t
val bitwise_left_shift_tensor_scalar : t -> 'a Scalar.t -> t
val bitwise_left_shift_tensor_scalar_ : t -> 'a Scalar.t -> t
val bitwise_left_shift_tensor_scalar_out : out:t -> t -> 'a Scalar.t -> t
val bitwise_not_ : t -> t
val bitwise_not_out : out:t -> t -> t
val bitwise_or_scalar_out : out:t -> t -> 'a Scalar.t -> t
val bitwise_or_tensor : t -> t -> t
val bitwise_or_tensor_ : t -> t -> t
val bitwise_or_tensor_out : out:t -> t -> t -> t
val bitwise_right_shift : t -> t -> t
val bitwise_right_shift_ : t -> t -> t
val bitwise_right_shift_scalar_tensor : 'a Scalar.t -> t -> t
val bitwise_right_shift_tensor_out : out:t -> t -> t -> t
val bitwise_right_shift_tensor_scalar : t -> 'a Scalar.t -> t
val bitwise_right_shift_tensor_scalar_ : t -> 'a Scalar.t -> t
val bitwise_right_shift_tensor_scalar_out : out:t -> t -> 'a Scalar.t -> t
val bitwise_xor_scalar_out : out:t -> t -> 'a Scalar.t -> t
val bitwise_xor_tensor : t -> t -> t
val bitwise_xor_tensor_ : t -> t -> t
val bitwise_xor_tensor_out : out:t -> t -> t -> t
val blackman_window_periodic :
window_length:int ->
periodic:bool ->
options:(Kind.packed * Device.t ) ->
t
val block_diag : t list -> t
val bmm : t -> mat2:t -> t
val bmm_out : out:t -> t -> mat2:t -> t
val broadcast_tensors : t list -> t list
val broadcast_to : t -> size:int list -> t
val bucketize : t -> boundaries:t -> out_int32:bool -> right:bool -> t
val bucketize_scalar :
'a Scalar.t ->
boundaries:t ->
out_int32:bool ->
right:bool ->
t
val bucketize_tensor_out :
out:t ->
t ->
boundaries:t ->
out_int32:bool ->
right:bool ->
t
val cartesian_prod : t list -> t
val cat : t list -> dim:int -> t
val cat_out : out:t -> t list -> dim:int -> t
val cauchy_ : t -> median:float -> sigma:float -> t
val cdist : x1:t -> x2:t -> p:float -> compute_mode:int -> t
val ceil_out : out:t -> t -> t
val chain_matmul : matrices:t list -> t
val chain_matmul_out : out:t -> matrices:t list -> t
val channel_shuffle : t -> groups:int -> t
val cholesky : t -> upper:bool -> t
val cholesky_inverse : t -> upper:bool -> t
val cholesky_inverse_out : out:t -> t -> upper:bool -> t
val cholesky_out : out:t -> t -> upper:bool -> t
val cholesky_solve : t -> input2:t -> upper:bool -> t
val cholesky_solve_out : out:t -> t -> input2:t -> upper:bool -> t
val choose_qparams_optimized :
t ->
numel:int ->
n_bins:int ->
ratio:float ->
bit_width:int ->
t * t
val chunk : t -> chunks:int -> dim:int -> t list
val clamp_max_tensor : t -> max:t -> t
val clamp_max_tensor_ : t -> max:t -> t
val clamp_max_tensor_out : out:t -> t -> max:t -> t
val clamp_min_tensor : t -> min:t -> t
val clamp_min_tensor_ : t -> min:t -> t
val clamp_min_tensor_out : out:t -> t -> min:t -> t
val clamp_tensor : t -> min:t option -> max:t option -> t
val clamp_tensor_ : t -> min:t option -> max:t option -> t
val clamp_tensor_out : out:t -> t -> min:t option -> max:t option -> t
val clip_tensor : t -> min:t option -> max:t option -> t
val clip_tensor_ : t -> min:t option -> max:t option -> t
val clip_tensor_out : out:t -> t -> min:t option -> max:t option -> t
val col2im :
t ->
output_size:int list ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
t
val col2im_backward :
grad_output:t ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
t
val col2im_out :
out:t ->
t ->
output_size:int list ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
t
val column_stack : t list -> t
val column_stack_out : out:t -> t list -> t
val combinations : t -> r:int -> with_replacement:bool -> t
val complex : real:t -> imag:t -> t
val complex_out : out:t -> real:t -> imag:t -> t
val concat : t list -> dim:int -> t
val concat_out : out:t -> t list -> dim:int -> t
val conj_physical : t -> t
val conj_physical_ : t -> t
val conj_physical_out : out:t -> t -> t
val constant_pad_nd : t -> pad:int list -> t
val conv1d :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
groups:int ->
t
val conv1d_padding :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:string ->
dilation:int list ->
groups:int ->
t
val conv2d :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
groups:int ->
t
val conv2d_padding :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:string ->
dilation:int list ->
groups:int ->
t
val conv3d :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
groups:int ->
t
val conv3d_padding :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:string ->
dilation:int list ->
groups:int ->
t
val conv_depthwise3d :
t ->
weight:t ->
kernel_size:int list ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
t
val conv_depthwise3d_backward :
grad_input:t ->
grad_weight:t ->
grad_bias:t ->
grad_output:t ->
t ->
weight:t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
t * t * t
val conv_tbc : t -> weight:t -> bias:t -> pad:int -> t
val conv_tbc_backward : t -> t -> weight:t -> bias:t -> pad:int -> t * t * t
val conv_transpose1d :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
output_padding:int list ->
groups:int ->
dilation:int list ->
t
val conv_transpose2d :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
output_padding:int list ->
groups:int ->
dilation:int list ->
t
val conv_transpose3d :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
output_padding:int list ->
groups:int ->
dilation:int list ->
t
val convolution :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
transposed:bool ->
output_padding:int list ->
groups:int ->
t
val convolution_overrideable :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
transposed:bool ->
output_padding:int list ->
groups:int ->
t
val copy_sparse_to_sparse_ : t -> src:t -> non_blocking:bool -> t
val copysign : t -> t -> t
val copysign_ : t -> t -> t
val copysign_out : out:t -> t -> t -> t
val copysign_scalar_out : out:t -> t -> 'a Scalar.t -> t
val cos_out : out:t -> t -> t
val cosh_out : out:t -> t -> t
val cosine_embedding_loss :
input1:t ->
input2:t ->
target:t ->
margin:float ->
reduction:Reduction.t ->
t
val cosine_similarity : x1:t -> x2:t -> dim:int -> eps:float -> t
val cov : t -> correction:int -> fweights:t option -> aweights:t option -> t
val cross : t -> t -> dim:int -> t
val cross_entropy_loss :
t ->
target:t ->
weight:t option ->
reduction:Reduction.t ->
ignore_index:int ->
label_smoothing:float ->
t
val cross_out : out:t -> t -> t -> dim:int -> t
val crow_indices : t -> t
val ctc_loss :
log_probs:t ->
targets:t ->
input_lengths:int list ->
target_lengths:int list ->
blank:int ->
reduction:Reduction.t ->
zero_infinity:bool ->
t
val ctc_loss_tensor :
log_probs:t ->
targets:t ->
input_lengths:t ->
target_lengths:t ->
blank:int ->
reduction:Reduction.t ->
zero_infinity:bool ->
t
val cudnn_affine_grid_generator :
theta:t ->
n:int ->
c:int ->
h:int ->
w:int ->
t
val cudnn_affine_grid_generator_backward :
grad:t ->
n:int ->
c:int ->
h:int ->
w:int ->
t
val cudnn_batch_norm :
t ->
weight:t ->
bias:t option ->
running_mean:t option ->
running_var:t option ->
training:bool ->
exponential_average_factor:float ->
epsilon:float ->
t * t * t * t
val cudnn_batch_norm_backward :
t ->
grad_output:t ->
weight:t ->
running_mean:t option ->
running_var:t option ->
save_mean:t option ->
save_var:t option ->
epsilon:float ->
reservespace:t ->
t * t * t
val cudnn_convolution :
t ->
weight:t ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
allow_tf32:bool ->
t
val cudnn_convolution_add_relu :
t ->
weight:t ->
z:t ->
alpha:'a Scalar.t ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
groups:int ->
t
val cudnn_convolution_backward_weight :
weight_size:int list ->
grad_output:t ->
t ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
allow_tf32:bool ->
t
val cudnn_convolution_deprecated :
t ->
weight:t ->
bias:t option ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
t
val cudnn_convolution_deprecated2 :
t ->
weight:t ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
t
val cudnn_convolution_relu :
t ->
weight:t ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
groups:int ->
t
val cudnn_convolution_transpose :
t ->
weight:t ->
padding:int list ->
output_padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
allow_tf32:bool ->
t
val cudnn_convolution_transpose_backward_weight :
weight_size:int list ->
grad_output:t ->
t ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
allow_tf32:bool ->
t
val cudnn_convolution_transpose_deprecated :
t ->
weight:t ->
bias:t option ->
padding:int list ->
output_padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
t
val cudnn_convolution_transpose_deprecated2 :
t ->
weight:t ->
padding:int list ->
output_padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
t
val cudnn_grid_sampler : t -> grid:t -> t
val cudnn_grid_sampler_backward : t -> grid:t -> grad_output:t -> t * t
val cummax : t -> dim:int -> t * t
val cummax_out : values:t -> indices:t -> t -> dim:int -> t * t
val cummaxmin_backward : grad:t -> t -> indices:t -> dim:int -> t
val cummin : t -> dim:int -> t * t
val cummin_out : values:t -> indices:t -> t -> dim:int -> t * t
val cumprod_backward : grad:t -> t -> dim:int -> output:t -> t
val cumulative_trapezoid : y:t -> dim:int -> t
val cumulative_trapezoid_x : y:t -> x:t -> dim:int -> t
val deg2rad_out : out:t -> t -> t
val dequantize_tensors : t list -> t list
val diag : t -> diagonal:int -> t
val diag_backward : grad:t -> input_sizes:int list -> diagonal:int -> t
val diag_embed : t -> offset:int -> dim1:int -> dim2:int -> t
val diag_out : out:t -> t -> diagonal:int -> t
val diagflat : t -> offset:int -> t
val diagonal : t -> offset:int -> dim1:int -> dim2:int -> t
val diagonal_backward :
grad_output:t ->
input_sizes:int list ->
offset:int ->
dim1:int ->
dim2:int ->
t
val diff : t -> n:int -> dim:int -> prepend:t option -> append:t option -> t
val diff_out :
out:t ->
t ->
n:int ->
dim:int ->
prepend:t option ->
append:t option ->
t
val digamma_out : out:t -> t -> t
val div_out : out:t -> t -> t -> t
val div_out_mode : out:t -> t -> t -> rounding_mode:string -> t
val div_scalar_mode : t -> 'a Scalar.t -> rounding_mode:string -> t
val div_scalar_mode_ : t -> 'a Scalar.t -> rounding_mode:string -> t
val div_tensor_mode : t -> t -> rounding_mode:string -> t
val div_tensor_mode_ : t -> t -> rounding_mode:string -> t
val divide_ : t -> t -> t
val divide_out : out:t -> t -> t -> t
val divide_out_mode : out:t -> t -> t -> rounding_mode:string -> t
val divide_scalar_mode : t -> 'a Scalar.t -> rounding_mode:string -> t
val divide_scalar_mode_ : t -> 'a Scalar.t -> rounding_mode:string -> t
val divide_tensor_mode : t -> t -> rounding_mode:string -> t
val divide_tensor_mode_ : t -> t -> rounding_mode:string -> t
val dot_out : out:t -> t -> t -> t
val dropout : t -> p:float -> train:bool -> t
val dropout_ : t -> p:float -> train:bool -> t
val dsplit : t -> sections:int -> t list
val dsplit_array : t -> indices:int list -> t list
val dstack_out : out:t -> t list -> t
val eig : t -> eigenvectors:bool -> t * t
val eig_e : e:t -> v:t -> t -> eigenvectors:bool -> t * t
val einsum : equation:string -> t list -> t
val elu_backward :
grad_output:t ->
alpha:'a Scalar.t ->
scale:'a Scalar.t ->
input_scale:'a Scalar.t ->
is_result:bool ->
self_or_result:t ->
t
val elu_out : out:t -> t -> t
val embedding :
weight:t ->
indices:t ->
padding_idx:int ->
scale_grad_by_freq:bool ->
sparse:bool ->
t
val embedding_backward :
grad:t ->
indices:t ->
num_weights:int ->
padding_idx:int ->
scale_grad_by_freq:bool ->
sparse:bool ->
t
val embedding_bag :
weight:t ->
indices:t ->
offsets:t ->
scale_grad_by_freq:bool ->
mode:int ->
sparse:bool ->
per_sample_weights:t option ->
include_last_offset:bool ->
t * t * t * t
val embedding_bag_padding_idx :
weight:t ->
indices:t ->
offsets:t ->
scale_grad_by_freq:bool ->
mode:int ->
sparse:bool ->
per_sample_weights:t option ->
include_last_offset:bool ->
padding_idx:int ->
t * t * t * t
val embedding_dense_backward :
grad_output:t ->
indices:t ->
num_weights:int ->
padding_idx:int ->
scale_grad_by_freq:bool ->
t
val embedding_renorm_ :
t ->
indices:t ->
max_norm:float ->
norm_type:float ->
t
val embedding_sparse_backward :
grad:t ->
indices:t ->
num_weights:int ->
padding_idx:int ->
scale_grad_by_freq:bool ->
t
val empty_out : out:t -> size:int list -> t
val eq_tensor : t -> t -> t
val eq_tensor_ : t -> t -> t
val eq_tensor_out : out:t -> t -> t -> t
val erf_out : out:t -> t -> t
val erfc_out : out:t -> t -> t
val erfinv_out : out:t -> t -> t
val exp2_out : out:t -> t -> t
val exp_out : out:t -> t -> t
val expand : t -> size:int list -> implicit:bool -> t
val expand_as : t -> t -> t
val expm1_out : out:t -> t -> t
val exponential_ : t -> lambd:float -> t
val eye_m_out : out:t -> n:int -> m:int -> t
val eye_out : out:t -> n:int -> t
val fake_quantize_per_channel_affine :
t ->
scale:t ->
zero_point:t ->
axis:int ->
quant_min:int ->
quant_max:int ->
t
val fake_quantize_per_channel_affine_cachemask :
t ->
scale:t ->
zero_point:t ->
axis:int ->
quant_min:int ->
quant_max:int ->
t * t
val fake_quantize_per_channel_affine_cachemask_backward : grad:t -> mask:t -> t
val fake_quantize_per_tensor_affine :
t ->
scale:float ->
zero_point:int ->
quant_min:int ->
quant_max:int ->
t
val fake_quantize_per_tensor_affine_cachemask :
t ->
scale:float ->
zero_point:int ->
quant_min:int ->
quant_max:int ->
t * t
val fake_quantize_per_tensor_affine_cachemask_backward : grad:t -> mask:t -> t
val fake_quantize_per_tensor_affine_tensor_qparams :
t ->
scale:t ->
zero_point:t ->
quant_min:int ->
quant_max:int ->
t
val fbgemm_linear_fp16_weight : t -> packed_weight:t -> bias:t -> t
val fbgemm_linear_fp16_weight_fp32_activation :
t ->
packed_weight:t ->
bias:t ->
t
val fbgemm_linear_int8_weight :
t ->
weight:t ->
packed:t ->
col_offsets:t ->
weight_scale:'a Scalar.t ->
weight_zero_point:'a Scalar.t ->
bias:t ->
t
val fbgemm_linear_int8_weight_fp32_activation :
t ->
weight:t ->
packed:t ->
col_offsets:t ->
weight_scale:'a Scalar.t ->
weight_zero_point:'a Scalar.t ->
bias:t ->
t
val fbgemm_pack_gemm_matrix_fp16 : t -> t
val fbgemm_pack_quantized_matrix : t -> t
val fbgemm_pack_quantized_matrix_kn : t -> k:int -> n:int -> t
val feature_alpha_dropout : t -> p:float -> train:bool -> t
val feature_alpha_dropout_ : t -> p:float -> train:bool -> t
val feature_dropout : t -> p:float -> train:bool -> t
val feature_dropout_ : t -> p:float -> train:bool -> t
val fft_fft : t -> n:int -> dim:int -> norm:string -> t
val fft_fft2 : t -> s:int list -> dim:int list -> norm:string -> t
val fft_fft2_out : out:t -> t -> s:int list -> dim:int list -> norm:string -> t
val fft_fft_out : out:t -> t -> n:int -> dim:int -> norm:string -> t
val fft_fftfreq_out : out:t -> n:int -> d:float -> t
val fft_fftn : t -> s:int list -> dim:int list -> norm:string -> t
val fft_fftn_out : out:t -> t -> s:int list -> dim:int list -> norm:string -> t
val fft_fftshift : t -> dim:int list -> t
val fft_hfft : t -> n:int -> dim:int -> norm:string -> t
val fft_hfft_out : out:t -> t -> n:int -> dim:int -> norm:string -> t
val fft_ifft : t -> n:int -> dim:int -> norm:string -> t
val fft_ifft2 : t -> s:int list -> dim:int list -> norm:string -> t
val fft_ifft2_out :
out:t ->
t ->
s:int list ->
dim:int list ->
norm:string ->
t
val fft_ifft_out : out:t -> t -> n:int -> dim:int -> norm:string -> t
val fft_ifftn : t -> s:int list -> dim:int list -> norm:string -> t
val fft_ifftn_out :
out:t ->
t ->
s:int list ->
dim:int list ->
norm:string ->
t
val fft_ifftshift : t -> dim:int list -> t
val fft_ihfft : t -> n:int -> dim:int -> norm:string -> t
val fft_ihfft_out : out:t -> t -> n:int -> dim:int -> norm:string -> t
val fft_irfft : t -> n:int -> dim:int -> norm:string -> t
val fft_irfft2 : t -> s:int list -> dim:int list -> norm:string -> t
val fft_irfft2_out :
out:t ->
t ->
s:int list ->
dim:int list ->
norm:string ->
t
val fft_irfft_out : out:t -> t -> n:int -> dim:int -> norm:string -> t
val fft_irfftn : t -> s:int list -> dim:int list -> norm:string -> t
val fft_irfftn_out :
out:t ->
t ->
s:int list ->
dim:int list ->
norm:string ->
t
val fft_rfft : t -> n:int -> dim:int -> norm:string -> t
val fft_rfft2 : t -> s:int list -> dim:int list -> norm:string -> t
val fft_rfft2_out :
out:t ->
t ->
s:int list ->
dim:int list ->
norm:string ->
t
val fft_rfft_out : out:t -> t -> n:int -> dim:int -> norm:string -> t
val fft_rfftfreq_out : out:t -> n:int -> d:float -> t
val fft_rfftn : t -> s:int list -> dim:int list -> norm:string -> t
val fft_rfftn_out :
out:t ->
t ->
s:int list ->
dim:int list ->
norm:string ->
t
val fill_diagonal_ : t -> fill_value:'a Scalar.t -> wrap:bool -> t
val fill_tensor_ : t -> value:t -> t
val fix_out : out:t -> t -> t
val flatten : t -> start_dim:int -> end_dim:int -> t
val flatten_dense_tensors : t list -> t
val flip : t -> dims:int list -> t
val float_power : t -> exponent:t -> t
val float_power_scalar : 'a Scalar.t -> exponent:t -> t
val float_power_scalar_out : out:t -> 'a Scalar.t -> exponent:t -> t
val float_power_tensor_ : t -> exponent:t -> t
val float_power_tensor_scalar : t -> exponent:'a Scalar.t -> t
val float_power_tensor_scalar_out : out:t -> t -> exponent:'a Scalar.t -> t
val float_power_tensor_tensor_out : out:t -> t -> exponent:t -> t
val floor_divide : t -> t -> t
val floor_divide_ : t -> t -> t
val floor_divide_out : out:t -> t -> t -> t
val floor_out : out:t -> t -> t
val fmax_out : out:t -> t -> t -> t
val fmin_out : out:t -> t -> t -> t
val fmod_tensor : t -> t -> t
val fmod_tensor_ : t -> t -> t
val fmod_tensor_out : out:t -> t -> t -> t
val frac_out : out:t -> t -> t
val fractional_max_pool2d :
t ->
kernel_size:int list ->
output_size:int list ->
random_samples:t ->
t * t
val fractional_max_pool2d_backward :
grad_output:t ->
t ->
kernel_size:int list ->
output_size:int list ->
indices:t ->
t
val fractional_max_pool2d_output :
output:t ->
indices:t ->
t ->
kernel_size:int list ->
output_size:int list ->
random_samples:t ->
t * t
val fractional_max_pool3d :
t ->
kernel_size:int list ->
output_size:int list ->
random_samples:t ->
t * t
val fractional_max_pool3d_backward :
grad_output:t ->
t ->
kernel_size:int list ->
output_size:int list ->
indices:t ->
t
val fractional_max_pool3d_output :
output:t ->
indices:t ->
t ->
kernel_size:int list ->
output_size:int list ->
random_samples:t ->
t * t
val frexp_tensor_out : mantissa:t -> exponent:t -> t -> t * t
val frobenius_norm : t -> t
val frobenius_norm_dim : t -> dim:int list -> keepdim:bool -> t
val frobenius_norm_out : out:t -> t -> dim:int list -> keepdim:bool -> t
val full_out : out:t -> size:int list -> fill_value:'a Scalar.t -> t
val fused_moving_avg_obs_fake_quant :
t ->
observer_on:t ->
fake_quant_on:t ->
running_min:t ->
running_max:t ->
scale:t ->
zero_point:t ->
averaging_const:float ->
quant_min:int ->
quant_max:int ->
ch_axis:int ->
per_row_fake_quant:bool ->
symmetric_quant:bool ->
t
val gather : t -> dim:int -> index:t -> sparse_grad:bool -> t
val gather_backward :
grad:t ->
t ->
dim:int ->
index:t ->
sparse_grad:bool ->
t
val gather_out : out:t -> t -> dim:int -> index:t -> sparse_grad:bool -> t
val gcd_out : out:t -> t -> t -> t
val ge_tensor : t -> t -> t
val ge_tensor_ : t -> t -> t
val ge_tensor_out : out:t -> t -> t -> t
val gelu_backward : grad:t -> t -> t
val gelu_out : out:t -> t -> t
val geometric_ : t -> p:float -> t
val geqrf_a : a:t -> tau:t -> t -> t * t
val ger : t -> vec2:t -> t
val ger_out : out:t -> t -> vec2:t -> t
val glu : t -> dim:int -> t
val glu_backward : grad_output:t -> t -> dim:int -> t
val glu_out : out:t -> t -> dim:int -> t
val greater_equal_scalar_out : out:t -> t -> 'a Scalar.t -> t
val greater_equal_tensor : t -> t -> t
val greater_equal_tensor_ : t -> t -> t
val greater_equal_tensor_out : out:t -> t -> t -> t
val greater_scalar_out : out:t -> t -> 'a Scalar.t -> t
val greater_tensor : t -> t -> t
val greater_tensor_ : t -> t -> t
val greater_tensor_out : out:t -> t -> t -> t
val grid_sampler :
t ->
grid:t ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
t
val grid_sampler_2d :
t ->
grid:t ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
t
val grid_sampler_2d_backward :
grad_output:t ->
t ->
grid:t ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
t * t
val grid_sampler_3d :
t ->
grid:t ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
t
val grid_sampler_3d_backward :
grad_output:t ->
t ->
grid:t ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
t * t
val group_norm :
t ->
num_groups:int ->
weight:t option ->
bias:t option ->
eps:float ->
cudnn_enabled:bool ->
t
val gru :
t ->
hx:t ->
params:t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
batch_first:bool ->
t * t
val gru_cell :
t ->
hx:t ->
w_ih:t ->
w_hh:t ->
b_ih:t option ->
b_hh:t option ->
t
val gru_data :
data:t ->
batch_sizes:t ->
hx:t ->
params:t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
t * t
val gt_tensor : t -> t -> t
val gt_tensor_ : t -> t -> t
val gt_tensor_out : out:t -> t -> t -> t
val hamming_window_periodic :
window_length:int ->
periodic:bool ->
options:(Kind.packed * Device.t ) ->
t
val hamming_window_periodic_alpha :
window_length:int ->
periodic:bool ->
alpha:float ->
options:(Kind.packed * Device.t ) ->
t
val hamming_window_periodic_alpha_beta :
window_length:int ->
periodic:bool ->
alpha:float ->
beta:float ->
options:(Kind.packed * Device.t ) ->
t
val hann_window_periodic :
window_length:int ->
periodic:bool ->
options:(Kind.packed * Device.t ) ->
t
val hardshrink_backward : grad_out:t -> t -> lambd:'a Scalar.t -> t
val hardshrink_out : out:t -> t -> t
val hardsigmoid_ : t -> t
val hardsigmoid_backward : grad_output:t -> t -> t
val hardsigmoid_out : out:t -> t -> t
val hardswish_backward : grad_output:t -> t -> t
val hardswish_out : out:t -> t -> t
val hardtanh_out : out:t -> t -> t
val heaviside : t -> values:t -> t
val heaviside_ : t -> values:t -> t
val heaviside_out : out:t -> t -> values:t -> t
val hinge_embedding_loss :
t ->
target:t ->
margin:float ->
reduction:Reduction.t ->
t
val histc : t -> bins:int -> t
val histc_out : out:t -> t -> bins:int -> t
val hsplit : t -> sections:int -> t list
val hsplit_array : t -> indices:int list -> t list
val hspmm : mat1:t -> mat2:t -> t
val hspmm_out : out:t -> mat1:t -> mat2:t -> t
val hstack_out : out:t -> t list -> t
val huber_loss : t -> target:t -> reduction:Reduction.t -> delta:float -> t
val huber_loss_backward :
grad_output:t ->
t ->
target:t ->
reduction:Reduction.t ->
delta:float ->
t
val huber_loss_backward_out :
grad_input:t ->
grad_output:t ->
t ->
target:t ->
reduction:Reduction.t ->
delta:float ->
t
val huber_loss_out :
out:t ->
t ->
target:t ->
reduction:Reduction.t ->
delta:float ->
t
val hypot_out : out:t -> t -> t -> t
val i0_out : out:t -> t -> t
val igamma_ : t -> t -> t
val igamma_out : out:t -> t -> t -> t
val igammac : t -> t -> t
val igammac_ : t -> t -> t
val igammac_out : out:t -> t -> t -> t
val im2col :
t ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
t
val im2col_backward :
grad_output:t ->
input_size:int list ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
t
val im2col_out :
out:t ->
t ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
t
val index : t -> indices:t option list -> t
val index_add : t -> dim:int -> index:t -> source:t -> t
val index_add_ : t -> dim:int -> index:t -> source:t -> t
val index_add_alpha :
t ->
dim:int ->
index:t ->
source:t ->
alpha:'a Scalar.t ->
t
val index_add_alpha_ :
t ->
dim:int ->
index:t ->
source:t ->
alpha:'a Scalar.t ->
t
val index_copy : t -> dim:int -> index:t -> source:t -> t
val index_copy_ : t -> dim:int -> index:t -> source:t -> t
val index_fill : t -> dim:int -> index:t -> value:'a Scalar.t -> t
val index_fill_ : t -> dim:int -> index:t -> value:'a Scalar.t -> t
val index_fill_int_tensor : t -> dim:int -> index:t -> value:t -> t
val index_fill_int_tensor_ : t -> dim:int -> index:t -> value:t -> t
val index_put : t -> indices:t option list -> values:t -> accumulate:bool -> t
val index_put_ : t -> indices:t option list -> values:t -> accumulate:bool -> t
val index_select : t -> dim:int -> index:t -> t
val index_select_backward :
grad:t ->
self_sizes:int list ->
dim:int ->
index:t ->
t
val index_select_out : out:t -> t -> dim:int -> index:t -> t
val infinitely_differentiable_gelu_backward : grad:t -> t -> t
val inner_out : out:t -> t -> t -> t
val instance_norm :
t ->
weight:t option ->
bias:t option ->
running_mean:t option ->
running_var:t option ->
use_input_stats:bool ->
momentum:float ->
eps:float ->
cudnn_enabled:bool ->
t
val inverse_out : out:t -> t -> t
val isclose : t -> t -> rtol:float -> atol:float -> equal_nan:bool -> t
val isin :
elements:t ->
test_elements:t ->
assume_unique:bool ->
invert:bool ->
t
val isin_scalar_tensor :
element:'a Scalar.t ->
test_elements:t ->
assume_unique:bool ->
invert:bool ->
t
val isin_scalar_tensor_out :
out:t ->
element:'a Scalar.t ->
test_elements:t ->
assume_unique:bool ->
invert:bool ->
t
val isin_tensor_scalar :
elements:t ->
test_element:'a Scalar.t ->
assume_unique:bool ->
invert:bool ->
t
val isin_tensor_scalar_out :
out:t ->
elements:t ->
test_element:'a Scalar.t ->
assume_unique:bool ->
invert:bool ->
t
val isin_tensor_tensor_out :
out:t ->
elements:t ->
test_elements:t ->
assume_unique:bool ->
invert:bool ->
t
val isneginf_out : out:t -> t -> t
val isposinf_out : out:t -> t -> t
val istft :
t ->
n_fft:int ->
hop_length:int ->
win_length:int ->
window:t option ->
center:bool ->
normalized:bool ->
onesided:bool ->
length:int ->
return_complex:bool ->
t
val kaiser_window_beta :
window_length:int ->
periodic:bool ->
beta:float ->
options:(Kind.packed * Device.t ) ->
t
val kaiser_window_periodic :
window_length:int ->
periodic:bool ->
options:(Kind.packed * Device.t ) ->
t
val kl_div : t -> target:t -> reduction:Reduction.t -> log_target:bool -> t
val kl_div_backward :
grad_output:t ->
t ->
target:t ->
reduction:Reduction.t ->
log_target:bool ->
t
val kron_out : out:t -> t -> t -> t
val kthvalue : t -> k:int -> dim:int -> keepdim:bool -> t * t
val kthvalue_values :
values:t ->
indices:t ->
t ->
k:int ->
dim:int ->
keepdim:bool ->
t * t
val l1_loss_backward :
grad_output:t ->
t ->
target:t ->
reduction:Reduction.t ->
t
val layer_norm :
t ->
normalized_shape:int list ->
weight:t option ->
bias:t option ->
eps:float ->
cudnn_enable:bool ->
t
val lcm_out : out:t -> t -> t -> t
val ldexp_out : out:t -> t -> t -> t
val le_tensor : t -> t -> t
val le_tensor_ : t -> t -> t
val le_tensor_out : out:t -> t -> t -> t
val leaky_relu_backward :
grad_output:t ->
t ->
negative_slope:'a Scalar.t ->
self_is_result:bool ->
t
val leaky_relu_out : out:t -> t -> t
val lerp_scalar_out : out:t -> t -> end_:t -> weight:'a Scalar.t -> t
val lerp_tensor : t -> end_:t -> weight:t -> t
val lerp_tensor_ : t -> end_:t -> weight:t -> t
val lerp_tensor_out : out:t -> t -> end_:t -> weight:t -> t
val less_equal_scalar_out : out:t -> t -> 'a Scalar.t -> t
val less_equal_tensor : t -> t -> t
val less_equal_tensor_ : t -> t -> t
val less_equal_tensor_out : out:t -> t -> t -> t
val less_tensor : t -> t -> t
val less_tensor_ : t -> t -> t
val less_tensor_out : out:t -> t -> t -> t
val lgamma_out : out:t -> t -> t
val linalg_cholesky : t -> upper:bool -> t
val linalg_cholesky_ex : t -> upper:bool -> check_errors:bool -> t * t
val linalg_cholesky_ex_l :
l:t ->
info:t ->
t ->
upper:bool ->
check_errors:bool ->
t * t
val linalg_cholesky_out : out:t -> t -> upper:bool -> t
val linalg_cond_p_str : t -> p:string -> t
val linalg_cond_p_str_out : out:t -> t -> p:string -> t
val linalg_det_out : out:t -> t -> t
val linalg_eig : t -> t * t
val linalg_eig_out : eigenvalues:t -> eigenvectors:t -> t -> t * t
val linalg_eigh : t -> uplo:string -> t * t
val linalg_eigh_eigvals : eigvals:t -> eigvecs:t -> t -> uplo:string -> t * t
val linalg_eigvals : t -> t
val linalg_eigvals_out : out:t -> t -> t
val linalg_eigvalsh : t -> uplo:string -> t
val linalg_eigvalsh_out : out:t -> t -> uplo:string -> t
val linalg_householder_product : t -> tau:t -> t
val linalg_householder_product_out : out:t -> t -> tau:t -> t
val linalg_inv_ex : t -> check_errors:bool -> t * t
val linalg_inv_ex_inverse :
inverse:t ->
info:t ->
t ->
check_errors:bool ->
t * t
val linalg_inv_out : out:t -> t -> t
val linalg_lstsq : t -> b:t -> rcond:float -> driver:string -> t * t * t * t
val linalg_lstsq_out :
solution:t ->
residuals:t ->
rank:t ->
singular_values:t ->
t ->
b:t ->
rcond:float ->
driver:string ->
t * t * t * t
val linalg_matmul : t -> t -> t
val linalg_matmul_out : out:t -> t -> t -> t
val linalg_matrix_power : t -> n:int -> t
val linalg_matrix_power_out : out:t -> t -> n:int -> t
val linalg_matrix_rank : t -> tol:float -> hermitian:bool -> t
val linalg_matrix_rank_out : out:t -> t -> tol:float -> hermitian:bool -> t
val linalg_matrix_rank_out_tol_tensor :
out:t ->
t ->
tol:t ->
hermitian:bool ->
t
val linalg_matrix_rank_tol_tensor : t -> tol:t -> hermitian:bool -> t
val linalg_multi_dot : t list -> t
val linalg_multi_dot_out : out:t -> t list -> t
val linalg_pinv : t -> rcond:float -> hermitian:bool -> t
val linalg_pinv_out : out:t -> t -> rcond:float -> hermitian:bool -> t
val linalg_pinv_out_rcond_tensor : out:t -> t -> rcond:t -> hermitian:bool -> t
val linalg_pinv_rcond_tensor : t -> rcond:t -> hermitian:bool -> t
val linalg_qr : t -> mode:string -> t * t
val linalg_qr_out : q:t -> r:t -> t -> mode:string -> t * t
val linalg_slogdet : t -> t * t
val linalg_slogdet_out : sign:t -> logabsdet:t -> t -> t * t
val linalg_solve : t -> t -> t
val linalg_solve_out : out:t -> t -> t -> t
val linalg_svd : t -> full_matrices:bool -> t * t * t
val linalg_svd_u : u:t -> s:t -> vh:t -> t -> full_matrices:bool -> t * t * t
val linalg_svdvals : t -> t
val linalg_svdvals_out : out:t -> t -> t
val linalg_tensorinv : t -> ind:int -> t
val linalg_tensorinv_out : out:t -> t -> ind:int -> t
val linalg_tensorsolve : t -> t -> dims:int list -> t
val linalg_tensorsolve_out : out:t -> t -> t -> dims:int list -> t
val linear : t -> weight:t -> bias:t option -> t
val linear_out : out:t -> t -> weight:t -> bias:t option -> t
val log10_out : out:t -> t -> t
val log1p_out : out:t -> t -> t
val log2_out : out:t -> t -> t
val log_normal_ : t -> mean:float -> std:float -> t
val log_out : out:t -> t -> t
val log_sigmoid_backward : grad_output:t -> t -> buffer:t -> t
val log_sigmoid_out : out:t -> t -> t
val logaddexp : t -> t -> t
val logaddexp2 : t -> t -> t
val logaddexp2_out : out:t -> t -> t -> t
val logaddexp_out : out:t -> t -> t -> t
val logcumsumexp : t -> dim:int -> t
val logcumsumexp_out : out:t -> t -> dim:int -> t
val logical_and : t -> t -> t
val logical_and_ : t -> t -> t
val logical_and_out : out:t -> t -> t -> t
val logical_not_ : t -> t
val logical_not_out : out:t -> t -> t
val logical_or : t -> t -> t
val logical_or_ : t -> t -> t
val logical_or_out : out:t -> t -> t -> t
val logical_xor : t -> t -> t
val logical_xor_ : t -> t -> t
val logical_xor_out : out:t -> t -> t -> t
val logit : t -> eps:float -> t
val logit_ : t -> eps:float -> t
val logit_backward : grad_output:t -> t -> eps:float -> t
val logit_out : out:t -> t -> eps:float -> t
val logspace_out :
out:t ->
start:'a Scalar.t ->
end_:'a Scalar.t ->
steps:int ->
base:float ->
t
val logsumexp : t -> dim:int list -> keepdim:bool -> t
val logsumexp_out : out:t -> t -> dim:int list -> keepdim:bool -> t
val lstm :
t ->
hx:t list ->
params:t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
batch_first:bool ->
t * t * t
val lstm_cell :
t ->
hx:t list ->
w_ih:t ->
w_hh:t ->
b_ih:t option ->
b_hh:t option ->
t * t
val lstm_data :
data:t ->
batch_sizes:t ->
hx:t list ->
params:t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
t * t * t
val lstsq : t -> a:t -> t * t
val lstsq_x : x:t -> qr:t -> t -> a:t -> t * t
val lt_tensor : t -> t -> t
val lt_tensor_ : t -> t -> t
val lt_tensor_out : out:t -> t -> t -> t
val lu_solve : t -> lu_data:t -> lu_pivots:t -> t
val lu_solve_out : out:t -> t -> lu_data:t -> lu_pivots:t -> t
val lu_unpack :
lu_data:t ->
lu_pivots:t ->
unpack_data:bool ->
unpack_pivots:bool ->
t * t * t
val lu_unpack_out :
p:t ->
l:t ->
u:t ->
lu_data:t ->
lu_pivots:t ->
unpack_data:bool ->
unpack_pivots:bool ->
t * t * t
val margin_ranking_loss :
input1:t ->
input2:t ->
target:t ->
margin:float ->
reduction:Reduction.t ->
t
val masked_fill : t -> mask:t -> value:'a Scalar.t -> t
val masked_fill_ : t -> mask:t -> value:'a Scalar.t -> t
val masked_fill_tensor : t -> mask:t -> value:t -> t
val masked_fill_tensor_ : t -> mask:t -> value:t -> t
val masked_scatter : t -> mask:t -> source:t -> t
val masked_scatter_ : t -> mask:t -> source:t -> t
val masked_select : t -> mask:t -> t
val masked_select_backward : grad:t -> t -> mask:t -> t
val masked_select_out : out:t -> t -> mask:t -> t
val matmul_out : out:t -> t -> t -> t
val matrix_exp_backward : t -> grad:t -> t
val matrix_power : t -> n:int -> t
val matrix_power_out : out:t -> t -> n:int -> t
val matrix_rank : t -> symmetric:bool -> t
val matrix_rank_tol : t -> tol:float -> symmetric:bool -> t
val max_dim : t -> dim:int -> keepdim:bool -> t * t
val max_dim_max :
max:t ->
max_values:t ->
t ->
dim:int ->
keepdim:bool ->
t * t
val max_other : t -> t -> t
val max_out : out:t -> t -> t -> t
val max_pool1d :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t
val max_pool1d_with_indices :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t * t
val max_pool2d :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t
val max_pool2d_with_indices :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t * t
val max_pool2d_with_indices_backward :
grad_output:t ->
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
indices:t ->
t
val max_pool2d_with_indices_out :
out:t ->
indices:t ->
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t * t
val max_pool3d :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t
val max_pool3d_with_indices :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t * t
val max_pool3d_with_indices_backward :
grad_output:t ->
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
indices:t ->
t
val max_pool3d_with_indices_out :
out:t ->
indices:t ->
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t * t
val max_unpool2d : t -> indices:t -> output_size:int list -> t
val max_unpool2d_backward :
grad_output:t ->
t ->
indices:t ->
output_size:int list ->
t
val max_unpool2d_out : out:t -> t -> indices:t -> output_size:int list -> t
val max_unpool3d :
t ->
indices:t ->
output_size:int list ->
stride:int list ->
padding:int list ->
t
val max_unpool3d_backward :
grad_output:t ->
t ->
indices:t ->
output_size:int list ->
stride:int list ->
padding:int list ->
t
val max_unpool3d_out :
out:t ->
t ->
indices:t ->
output_size:int list ->
stride:int list ->
padding:int list ->
t
val maximum : t -> t -> t
val maximum_out : out:t -> t -> t -> t
val mean_dim : t -> dim:int list -> keepdim:bool -> dtype:Kind.packed -> t
val mean_out :
out:t ->
t ->
dim:int list ->
keepdim:bool ->
dtype:Kind.packed ->
t
val meshgrid : t list -> t list
val meshgrid_indexing : t list -> indexing:string -> t list
val min_dim : t -> dim:int -> keepdim:bool -> t * t
val min_dim_min :
min:t ->
min_indices:t ->
t ->
dim:int ->
keepdim:bool ->
t * t
val min_other : t -> t -> t
val min_out : out:t -> t -> t -> t
val minimum : t -> t -> t
val minimum_out : out:t -> t -> t -> t
val miopen_batch_norm :
t ->
weight:t ->
bias:t option ->
running_mean:t option ->
running_var:t option ->
training:bool ->
exponential_average_factor:float ->
epsilon:float ->
t * t * t
val miopen_batch_norm_backward :
t ->
grad_output:t ->
weight:t ->
running_mean:t option ->
running_var:t option ->
save_mean:t option ->
save_var:t option ->
epsilon:float ->
t * t * t
val miopen_convolution :
t ->
weight:t ->
bias:t option ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
t
val miopen_convolution_backward_bias : grad_output:t -> t
val miopen_convolution_backward_weight :
weight_size:int list ->
grad_output:t ->
t ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
t
val miopen_convolution_transpose :
t ->
weight:t ->
bias:t option ->
padding:int list ->
output_padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
t
val miopen_convolution_transpose_backward_weight :
weight_size:int list ->
grad_output:t ->
t ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
t
val miopen_depthwise_convolution :
t ->
weight:t ->
bias:t option ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
t
val miopen_depthwise_convolution_backward_weight :
weight_size:int list ->
grad_output:t ->
t ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
t
val miopen_rnn :
t ->
weight:t list ->
weight_stride0:int ->
hx:t ->
cx:t option ->
mode:int ->
hidden_size:int ->
num_layers:int ->
batch_first:bool ->
dropout:float ->
train:bool ->
bidirectional:bool ->
batch_sizes:int list ->
dropout_state:t option ->
t * t * t * t * t
val mish_backward : grad_output:t -> t -> t
val mish_out : out:t -> t -> t
val mkldnn_adaptive_avg_pool2d : t -> output_size:int list -> t
val mkldnn_adaptive_avg_pool2d_backward : grad_output:t -> t -> t
val mkldnn_convolution :
t ->
weight:t ->
bias:t option ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
t
val mkldnn_convolution_backward_weights :
weight_size:int list ->
grad_output:t ->
t ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
bias_defined:bool ->
t * t
val mkldnn_linear : t -> weight:t -> bias:t option -> t
val mkldnn_linear_backward_weights :
grad_output:t ->
t ->
weight:t ->
bias_defined:bool ->
t * t
val mkldnn_max_pool2d :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t
val mkldnn_max_pool2d_backward :
grad_output:t ->
output:t ->
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t
val mkldnn_max_pool3d :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t
val mkldnn_max_pool3d_backward :
grad_output:t ->
output:t ->
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t
val mkldnn_reorder_conv2d_weight :
t ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
t
val mkldnn_reorder_conv3d_weight :
t ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
t
val mm : t -> mat2:t -> t
val mm_out : out:t -> t -> mat2:t -> t
val mode : t -> dim:int -> keepdim:bool -> t * t
val mode_values :
values:t ->
indices:t ->
t ->
dim:int ->
keepdim:bool ->
t * t
val moveaxis : t -> source:int list -> destination:int list -> t
val moveaxis_int : t -> source:int -> destination:int -> t
val movedim : t -> source:int list -> destination:int list -> t
val movedim_int : t -> source:int -> destination:int -> t
val mse_loss_backward :
grad_output:t ->
t ->
target:t ->
reduction:Reduction.t ->
t
val msort_out : out:t -> t -> t
val mul_out : out:t -> t -> t -> t
val multilabel_margin_loss : t -> target:t -> reduction:Reduction.t -> t
val multilabel_margin_loss_backward :
grad_output:t ->
t ->
target:t ->
reduction:Reduction.t ->
is_target:t ->
t
val multilabel_margin_loss_out :
out:t ->
t ->
target:t ->
reduction:Reduction.t ->
t
val multinomial : t -> num_samples:int -> replacement:bool -> t
val multinomial_out : out:t -> t -> num_samples:int -> replacement:bool -> t
val multiply : t -> t -> t
val multiply_ : t -> t -> t
val multiply_out : out:t -> t -> t -> t
val mv_out : out:t -> t -> vec:t -> t
val mvlgamma : t -> p:int -> t
val mvlgamma_ : t -> p:int -> t
val mvlgamma_out : out:t -> t -> p:int -> t
val nan_to_num : t -> nan:float -> posinf:float -> neginf:float -> t
val nan_to_num_ : t -> nan:float -> posinf:float -> neginf:float -> t
val nan_to_num_out :
out:t ->
t ->
nan:float ->
posinf:float ->
neginf:float ->
t
val nanmean : t -> dim:int list -> keepdim:bool -> dtype:Kind.packed -> t
val nanmean_out :
out:t ->
t ->
dim:int list ->
keepdim:bool ->
dtype:Kind.packed ->
t
val nanquantile : t -> q:t -> dim:int -> keepdim:bool -> t
val nanquantile_new :
t ->
q:t ->
dim:int ->
keepdim:bool ->
interpolation:string ->
t
val nanquantile_new_out :
out:t ->
t ->
q:t ->
dim:int ->
keepdim:bool ->
interpolation:string ->
t
val nanquantile_new_scalar :
t ->
q:float ->
dim:int ->
keepdim:bool ->
interpolation:string ->
t
val nanquantile_new_scalar_out :
out:t ->
t ->
q:float ->
dim:int ->
keepdim:bool ->
interpolation:string ->
t
val nanquantile_out : out:t -> t -> q:t -> dim:int -> keepdim:bool -> t
val nanquantile_scalar : t -> q:float -> dim:int -> keepdim:bool -> t
val nanquantile_scalar_out :
out:t ->
t ->
q:float ->
dim:int ->
keepdim:bool ->
t
val nansum_dim_intlist :
t ->
dim:int list ->
keepdim:bool ->
dtype:Kind.packed ->
t
val nansum_intlist_out :
out:t ->
t ->
dim:int list ->
keepdim:bool ->
dtype:Kind.packed ->
t
val narrow : t -> dim:int -> start:int -> length:int -> t
val narrow_copy : t -> dim:int -> start:int -> length:int -> t
val narrow_copy_out : out:t -> t -> dim:int -> start:int -> length:int -> t
val narrow_tensor : t -> dim:int -> start:t -> length:int -> t
val native_batch_norm :
t ->
weight:t option ->
bias:t option ->
running_mean:t option ->
running_var:t option ->
training:bool ->
momentum:float ->
eps:float ->
t * t * t
val native_batch_norm_out :
out:t ->
save_mean:t ->
save_invstd:t ->
t ->
weight:t option ->
bias:t option ->
running_mean:t option ->
running_var:t option ->
training:bool ->
momentum:float ->
eps:float ->
t * t * t
val native_group_norm :
t ->
weight:t option ->
bias:t option ->
n:int ->
c:int ->
hxw:int ->
group:int ->
eps:float ->
t * t * t
val native_layer_norm :
t ->
normalized_shape:int list ->
weight:t option ->
bias:t option ->
eps:float ->
t * t * t
val native_norm_scalaropt_dim_dtype :
t ->
p:'a Scalar.t ->
dim:int list ->
keepdim:bool ->
dtype:Kind.packed ->
t
val ne_tensor : t -> t -> t
val ne_tensor_ : t -> t -> t
val ne_tensor_out : out:t -> t -> t -> t
val neg_out : out:t -> t -> t
val negative_out : out:t -> t -> t
val nextafter : t -> t -> t
val nextafter_ : t -> t -> t
val nextafter_out : out:t -> t -> t -> t
val nll_loss :
t ->
target:t ->
weight:t option ->
reduction:Reduction.t ->
ignore_index:int ->
t
val nll_loss2d :
t ->
target:t ->
weight:t option ->
reduction:Reduction.t ->
ignore_index:int ->
t
val nll_loss2d_backward :
grad_output:t ->
t ->
target:t ->
weight:t option ->
reduction:Reduction.t ->
ignore_index:int ->
total_weight:t ->
t
val nll_loss2d_out :
out:t ->
t ->
target:t ->
weight:t option ->
reduction:Reduction.t ->
ignore_index:int ->
t
val nll_loss_backward :
grad_output:t ->
t ->
target:t ->
weight:t option ->
reduction:Reduction.t ->
ignore_index:int ->
total_weight:t ->
t
val nll_loss_nd :
t ->
target:t ->
weight:t option ->
reduction:Reduction.t ->
ignore_index:int ->
t
val nll_loss_out :
out:t ->
t ->
target:t ->
weight:t option ->
reduction:Reduction.t ->
ignore_index:int ->
t
val nonzero_numpy : t -> t list
val nonzero_out : out:t -> t -> t
val norm_except_dim : v:t -> pow:int -> dim:int -> t
val norm_out : out:t -> t -> p:'a Scalar.t -> dim:int list -> keepdim:bool -> t
val norm_scalaropt_dim :
t ->
p:'a Scalar.t ->
dim:int list ->
keepdim:bool ->
t
val norm_scalaropt_dim_dtype :
t ->
p:'a Scalar.t ->
dim:int list ->
keepdim:bool ->
dtype:Kind.packed ->
t
val normal : out:t -> mean:t -> std:float -> t
val normal_ : t -> mean:float -> std:float -> t
val normal_float_float_out :
out:t ->
mean:float ->
std:float ->
size:int list ->
t
val normal_float_tensor_out : out:t -> mean:float -> std:t -> t
val normal_tensor_tensor_out : out:t -> mean:t -> std:t -> t
val not_equal_scalar_out : out:t -> t -> 'a Scalar.t -> t
val not_equal_tensor : t -> t -> t
val not_equal_tensor_ : t -> t -> t
val not_equal_tensor_out : out:t -> t -> t -> t
val nuclear_norm : t -> keepdim:bool -> t
val nuclear_norm_dim : t -> dim:int list -> keepdim:bool -> t
val nuclear_norm_dim_out : out:t -> t -> dim:int list -> keepdim:bool -> t
val nuclear_norm_out : out:t -> t -> keepdim:bool -> t
val one_hot : t -> num_classes:int -> t
val ones_out : out:t -> size:int list -> t
val orgqr : t -> input2:t -> t
val orgqr_out : out:t -> t -> input2:t -> t
val ormqr : t -> input2:t -> input3:t -> left:bool -> transpose:bool -> t
val ormqr_out :
out:t ->
t ->
input2:t ->
input3:t ->
left:bool ->
transpose:bool ->
t
val outer : t -> vec2:t -> t
val outer_out : out:t -> t -> vec2:t -> t
val pad_sequence :
sequences:t list ->
batch_first:bool ->
padding_value:float ->
t
val pairwise_distance :
x1:t ->
x2:t ->
p:float ->
eps:float ->
keepdim:bool ->
t
val pdist : t -> p:float -> t
val permute : t -> dims:int list -> t
val pinverse : t -> rcond:float -> t
val pixel_shuffle : t -> upscale_factor:int -> t
val pixel_unshuffle : t -> downscale_factor:int -> t
val poisson_nll_loss :
t ->
target:t ->
log_input:bool ->
full:bool ->
eps:float ->
reduction:Reduction.t ->
t
val polar : abs:t -> angle:t -> t
val polar_out : out:t -> abs:t -> angle:t -> t
val polygamma : n:int -> t -> t
val polygamma_ : t -> n:int -> t
val polygamma_out : out:t -> n:int -> t -> t
val pow : t -> exponent:t -> t
val pow_scalar_out : out:t -> 'a Scalar.t -> exponent:t -> t
val pow_tensor_ : t -> exponent:t -> t
val pow_tensor_scalar : t -> exponent:'a Scalar.t -> t
val pow_tensor_scalar_out : out:t -> t -> exponent:'a Scalar.t -> t
val pow_tensor_tensor_out : out:t -> t -> exponent:t -> t
val prelu : t -> weight:t -> t
val prelu_backward : grad_output:t -> t -> weight:t -> t * t
val prod_dim_int : t -> dim:int -> keepdim:bool -> dtype:Kind.packed -> t
val prod_int_out :
out:t ->
t ->
dim:int ->
keepdim:bool ->
dtype:Kind.packed ->
t
val put : t -> index:t -> source:t -> accumulate:bool -> t
val put_ : t -> index:t -> source:t -> accumulate:bool -> t
val q_per_channel_scales : t -> t
val q_per_channel_zero_points : t -> t
val qr : t -> some:bool -> t * t
val qr_q : q:t -> r:t -> t -> some:bool -> t * t
val quantile : t -> q:t -> dim:int -> keepdim:bool -> t
val quantile_new :
t ->
q:t ->
dim:int ->
keepdim:bool ->
interpolation:string ->
t
val quantile_new_out :
out:t ->
t ->
q:t ->
dim:int ->
keepdim:bool ->
interpolation:string ->
t
val quantile_new_scalar :
t ->
q:float ->
dim:int ->
keepdim:bool ->
interpolation:string ->
t
val quantile_new_scalar_out :
out:t ->
t ->
q:float ->
dim:int ->
keepdim:bool ->
interpolation:string ->
t
val quantile_out : out:t -> t -> q:t -> dim:int -> keepdim:bool -> t
val quantile_scalar : t -> q:float -> dim:int -> keepdim:bool -> t
val quantile_scalar_out : out:t -> t -> q:float -> dim:int -> keepdim:bool -> t
val quantize_per_channel :
t ->
scales:t ->
zero_points:t ->
axis:int ->
dtype:Kind.packed ->
t
val quantize_per_tensor :
t ->
scale:float ->
zero_point:int ->
dtype:Kind.packed ->
t
val quantize_per_tensor_tensor_qparams :
t ->
scale:t ->
zero_point:t ->
dtype:Kind.packed ->
t
val quantize_per_tensor_tensors :
t list ->
scales:t ->
zero_points:t ->
dtype:Kind.packed ->
t list
val quantized_batch_norm :
t ->
weight:t option ->
bias:t option ->
mean:t ->
var:t ->
eps:float ->
output_scale:float ->
output_zero_point:int ->
t
val quantized_gru_cell :
t ->
hx:t ->
w_ih:t ->
w_hh:t ->
b_ih:t ->
b_hh:t ->
packed_ih:t ->
packed_hh:t ->
col_offsets_ih:t ->
col_offsets_hh:t ->
scale_ih:'a Scalar.t ->
scale_hh:'a Scalar.t ->
zero_point_ih:'a Scalar.t ->
zero_point_hh:'a Scalar.t ->
t
val quantized_lstm_cell :
t ->
hx:t list ->
w_ih:t ->
w_hh:t ->
b_ih:t ->
b_hh:t ->
packed_ih:t ->
packed_hh:t ->
col_offsets_ih:t ->
col_offsets_hh:t ->
scale_ih:'a Scalar.t ->
scale_hh:'a Scalar.t ->
zero_point_ih:'a Scalar.t ->
zero_point_hh:'a Scalar.t ->
t * t
val quantized_max_pool1d :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t
val quantized_max_pool2d :
t ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
t
val quantized_rnn_relu_cell :
t ->
hx:t ->
w_ih:t ->
w_hh:t ->
b_ih:t ->
b_hh:t ->
packed_ih:t ->
packed_hh:t ->
col_offsets_ih:t ->
col_offsets_hh:t ->
scale_ih:'a Scalar.t ->
scale_hh:'a Scalar.t ->
zero_point_ih:'a Scalar.t ->
zero_point_hh:'a Scalar.t ->
t
val quantized_rnn_tanh_cell :
t ->
hx:t ->
w_ih:t ->
w_hh:t ->
b_ih:t ->
b_hh:t ->
packed_ih:t ->
packed_hh:t ->
col_offsets_ih:t ->
col_offsets_hh:t ->
scale_ih:'a Scalar.t ->
scale_hh:'a Scalar.t ->
zero_point_ih:'a Scalar.t ->
zero_point_hh:'a Scalar.t ->
t
val rad2deg_out : out:t -> t -> t
val rand_out : out:t -> size:int list -> t
val randint_like : t -> high:int -> t
val randint_like_low_dtype : t -> low:int -> high:int -> t
val randint_low_out : out:t -> low:int -> high:int -> size:int list -> t
val randint_out : out:t -> high:int -> size:int list -> t
val randn_out : out:t -> size:int list -> t
val random_from_ : t -> from:int -> to_:int -> t
val random_to_ : t -> to_:int -> t
val randperm_out : out:t -> n:int -> t
val reciprocal_out : out:t -> t -> t
val reflection_pad1d : t -> padding:int list -> t
val reflection_pad1d_backward : grad_output:t -> t -> padding:int list -> t
val reflection_pad1d_out : out:t -> t -> padding:int list -> t
val reflection_pad2d : t -> padding:int list -> t
val reflection_pad2d_backward : grad_output:t -> t -> padding:int list -> t
val reflection_pad2d_out : out:t -> t -> padding:int list -> t
val reflection_pad3d : t -> padding:int list -> t
val reflection_pad3d_backward : grad_output:t -> t -> padding:int list -> t
val reflection_pad3d_out : out:t -> t -> padding:int list -> t
val remainder_scalar_out : out:t -> t -> 'a Scalar.t -> t
val remainder_scalar_tensor : 'a Scalar.t -> t -> t
val remainder_tensor : t -> t -> t
val remainder_tensor_ : t -> t -> t
val remainder_tensor_out : out:t -> t -> t -> t
val repeat : t -> repeats:int list -> t
val repeat_interleave : repeats:t -> output_size:int -> t
val repeat_interleave_self_int :
t ->
repeats:int ->
dim:int ->
output_size:int ->
t
val repeat_interleave_self_tensor :
t ->
repeats:t ->
dim:int ->
output_size:int ->
t
val replication_pad1d : t -> padding:int list -> t
val replication_pad1d_backward : grad_output:t -> t -> padding:int list -> t
val replication_pad1d_out : out:t -> t -> padding:int list -> t
val replication_pad2d : t -> padding:int list -> t
val replication_pad2d_backward : grad_output:t -> t -> padding:int list -> t
val replication_pad2d_out : out:t -> t -> padding:int list -> t
val replication_pad3d : t -> padding:int list -> t
val replication_pad3d_backward : grad_output:t -> t -> padding:int list -> t
val replication_pad3d_out : out:t -> t -> padding:int list -> t
val requires_grad_ : t -> requires_grad:bool -> t
val reshape : t -> shape:int list -> t
val reshape_as : t -> t -> t
val resize_ : t -> size:int list -> t
val resize_as_ : t -> the_template:t -> t
val resize_as_sparse_ : t -> the_template:t -> t
val resolve_conj : t -> t
val rnn_relu :
t ->
hx:t ->
params:t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
batch_first:bool ->
t * t
val rnn_relu_cell :
t ->
hx:t ->
w_ih:t ->
w_hh:t ->
b_ih:t option ->
b_hh:t option ->
t
val rnn_relu_data :
data:t ->
batch_sizes:t ->
hx:t ->
params:t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
t * t
val rnn_tanh :
t ->
hx:t ->
params:t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
batch_first:bool ->
t * t
val rnn_tanh_cell :
t ->
hx:t ->
w_ih:t ->
w_hh:t ->
b_ih:t option ->
b_hh:t option ->
t
val rnn_tanh_data :
data:t ->
batch_sizes:t ->
hx:t ->
params:t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
t * t
val roll : t -> shifts:int list -> dims:int list -> t
val rot90 : t -> k:int -> dims:int list -> t
val round_out : out:t -> t -> t
val row_stack : t list -> t
val row_stack_out : out:t -> t list -> t
val rrelu : t -> training:bool -> t
val rrelu_ : t -> training:bool -> t
val rrelu_with_noise : t -> noise:t -> training:bool -> t
val rrelu_with_noise_ : t -> noise:t -> training:bool -> t
val rrelu_with_noise_backward :
grad_output:t ->
t ->
noise:t ->
lower:'a Scalar.t ->
upper:'a Scalar.t ->
training:bool ->
self_is_result:bool ->
t
val rrelu_with_noise_out : out:t -> t -> noise:t -> training:bool -> t
val rsqrt_out : out:t -> t -> t
val scatter : t -> dim:int -> index:t -> src:t -> t
val scatter_ : t -> dim:int -> index:t -> src:t -> t
val scatter_add : t -> dim:int -> index:t -> src:t -> t
val scatter_add_ : t -> dim:int -> index:t -> src:t -> t
val scatter_add_out : out:t -> t -> dim:int -> index:t -> src:t -> t
val scatter_reduce : t -> dim:int -> index:t -> src:t -> reduce:string -> t
val scatter_reduce_ : t -> dim:int -> index:t -> src:t -> reduce:string -> t
val scatter_reduce_out :
out:t ->
t ->
dim:int ->
index:t ->
src:t ->
reduce:string ->
t
val scatter_src_out : out:t -> t -> dim:int -> index:t -> src:t -> t
val scatter_value : t -> dim:int -> index:t -> value:'a Scalar.t -> t
val scatter_value_ : t -> dim:int -> index:t -> value:'a Scalar.t -> t
val scatter_value_out :
out:t ->
t ->
dim:int ->
index:t ->
value:'a Scalar.t ->
t
val scatter_value_reduce :
t ->
dim:int ->
index:t ->
value:'a Scalar.t ->
reduce:string ->
t
val scatter_value_reduce_ :
t ->
dim:int ->
index:t ->
value:'a Scalar.t ->
reduce:string ->
t
val scatter_value_reduce_out :
out:t ->
t ->
dim:int ->
index:t ->
value:'a Scalar.t ->
reduce:string ->
t
val searchsorted : sorted_sequence:t -> t -> out_int32:bool -> right:bool -> t
val searchsorted_scalar :
sorted_sequence:t ->
'a Scalar.t ->
out_int32:bool ->
right:bool ->
t
val searchsorted_tensor_out :
out:t ->
sorted_sequence:t ->
t ->
out_int32:bool ->
right:bool ->
t
val segment_reduce :
data:t ->
reduce:string ->
lengths:t option ->
indices:t option ->
axis:int ->
unsafe:bool ->
initial:'a Scalar.t ->
t
val select_backward :
grad_output:t ->
input_sizes:int list ->
dim:int ->
index:int ->
t
val set_requires_grad : t -> r:bool -> t
val set_source_tensor_ : t -> source:t -> t
val sgn_out : out:t -> t -> t
val sigmoid_backward : grad_output:t -> output:t -> t
val sigmoid_out : out:t -> t -> t
val sign_out : out:t -> t -> t
val signbit_out : out:t -> t -> t
val silu_backward : grad_output:t -> t -> t
val silu_out : out:t -> t -> t
val sin_out : out:t -> t -> t
val sinc_out : out:t -> t -> t
val sinh_out : out:t -> t -> t
val slice : t -> dim:int -> start:int -> end_:int -> step:int -> t
val slice_backward :
grad_output:t ->
input_sizes:int list ->
dim:int ->
start:int ->
end_:int ->
step:int ->
t
val slow_conv3d :
t ->
weight:t ->
kernel_size:int list ->
bias:t option ->
stride:int list ->
padding:int list ->
t
val slow_conv3d_out :
out:t ->
t ->
weight:t ->
kernel_size:int list ->
bias:t option ->
stride:int list ->
padding:int list ->
t
val slow_conv_dilated2d :
t ->
weight:t ->
kernel_size:int list ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
t
val slow_conv_dilated3d :
t ->
weight:t ->
kernel_size:int list ->
bias:t option ->
stride:int list ->
padding:int list ->
dilation:int list ->
t
val slow_conv_transpose2d :
t ->
weight:t ->
kernel_size:int list ->
bias:t option ->
stride:int list ->
padding:int list ->
output_padding:int list ->
dilation:int list ->
t
val slow_conv_transpose2d_out :
out:t ->
t ->
weight:t ->
kernel_size:int list ->
bias:t option ->
stride:int list ->
padding:int list ->
output_padding:int list ->
dilation:int list ->
t
val slow_conv_transpose3d :
t ->
weight:t ->
kernel_size:int list ->
bias:t option ->
stride:int list ->
padding:int list ->
output_padding:int list ->
dilation:int list ->
t
val slow_conv_transpose3d_out :
out:t ->
t ->
weight:t ->
kernel_size:int list ->
bias:t option ->
stride:int list ->
padding:int list ->
output_padding:int list ->
dilation:int list ->
t
val smm : t -> mat2:t -> t
val smooth_l1_loss : t -> target:t -> reduction:Reduction.t -> beta:float -> t
val smooth_l1_loss_backward :
grad_output:t ->
t ->
target:t ->
reduction:Reduction.t ->
beta:float ->
t
val smooth_l1_loss_out :
out:t ->
t ->
target:t ->
reduction:Reduction.t ->
beta:float ->
t
val soft_margin_loss_backward :
grad_output:t ->
t ->
target:t ->
reduction:Reduction.t ->
t
val soft_margin_loss_out : out:t -> t -> target:t -> reduction:Reduction.t -> t
val softplus_backward :
grad_output:t ->
t ->
beta:'a Scalar.t ->
threshold:'a Scalar.t ->
output:t ->
t
val softplus_out : out:t -> t -> t
val softshrink_backward : grad_output:t -> t -> lambd:'a Scalar.t -> t
val softshrink_out : out:t -> t -> t
val solve : t -> a:t -> t * t
val solve_solution : solution:t -> lu:t -> t -> a:t -> t * t
val sort : t -> dim:int -> descending:bool -> t * t
val sort_stable : t -> stable:bool -> dim:int -> descending:bool -> t * t
val sort_values :
values:t ->
indices:t ->
t ->
dim:int ->
descending:bool ->
t * t
val sort_values_stable :
values:t ->
indices:t ->
t ->
stable:bool ->
dim:int ->
descending:bool ->
t * t
val sparse_coo_tensor_indices_size :
indices:t ->
values:t ->
size:int list ->
options:(Kind.packed * Device.t ) ->
t
val sparse_csr_tensor_crow_col_value_size :
crow_indices:t ->
col_indices:t ->
values:t ->
size:int list ->
options:(Kind.packed * Device.t ) ->
t
val sparse_mask : t -> mask:t -> t
val sparse_resize_ : t -> size:int list -> sparse_dim:int -> dense_dim:int -> t
val sparse_resize_and_clear_ :
t ->
size:int list ->
sparse_dim:int ->
dense_dim:int ->
t
val special_digamma : t -> t
val special_digamma_out : out:t -> t -> t
val special_entr : t -> t
val special_entr_out : out:t -> t -> t
val special_erf_out : out:t -> t -> t
val special_erfc : t -> t
val special_erfc_out : out:t -> t -> t
val special_erfcx : t -> t
val special_erfcx_out : out:t -> t -> t
val special_erfinv : t -> t
val special_erfinv_out : out:t -> t -> t
val special_exp2 : t -> t
val special_exp2_out : out:t -> t -> t
val special_expit : t -> t
val special_expit_out : out:t -> t -> t
val special_expm1 : t -> t
val special_expm1_out : out:t -> t -> t
val special_gammainc : t -> t -> t
val special_gammainc_out : out:t -> t -> t -> t
val special_gammaincc : t -> t -> t
val special_gammaincc_out : out:t -> t -> t -> t
val special_gammaln : t -> t
val special_gammaln_out : out:t -> t -> t
val special_i0_out : out:t -> t -> t
val special_i0e_out : out:t -> t -> t
val special_i1_out : out:t -> t -> t
val special_i1e_out : out:t -> t -> t
val special_log1p : t -> t
val special_log1p_out : out:t -> t -> t
val special_logit : t -> eps:float -> t
val special_logit_out : out:t -> t -> eps:float -> t
val special_logsumexp : t -> dim:int list -> keepdim:bool -> t
val special_logsumexp_out : out:t -> t -> dim:int list -> keepdim:bool -> t
val special_multigammaln : t -> p:int -> t
val special_multigammaln_out : out:t -> t -> p:int -> t
val special_ndtr : t -> t
val special_ndtr_out : out:t -> t -> t
val special_ndtri : t -> t
val special_ndtri_out : out:t -> t -> t
val special_polygamma : n:int -> t -> t
val special_polygamma_out : out:t -> n:int -> t -> t
val special_psi_out : out:t -> t -> t
val special_round : t -> t
val special_round_out : out:t -> t -> t
val special_sinc : t -> t
val special_sinc_out : out:t -> t -> t
val special_xlog1py : t -> t -> t
val special_xlog1py_other_scalar : t -> 'a Scalar.t -> t
val special_xlog1py_other_scalar_out : out:t -> t -> 'a Scalar.t -> t
val special_xlog1py_out : out:t -> t -> t -> t
val special_xlog1py_self_scalar : 'a Scalar.t -> t -> t
val special_xlog1py_self_scalar_out : out:t -> 'a Scalar.t -> t -> t
val special_xlogy : t -> t -> t
val special_xlogy_other_scalar : t -> 'a Scalar.t -> t
val special_xlogy_other_scalar_out : out:t -> t -> 'a Scalar.t -> t
val special_xlogy_out : out:t -> t -> t -> t
val special_xlogy_self_scalar : 'a Scalar.t -> t -> t
val special_xlogy_self_scalar_out : out:t -> 'a Scalar.t -> t -> t
val special_zeta : t -> t -> t
val special_zeta_other_scalar : t -> 'a Scalar.t -> t
val special_zeta_other_scalar_out : out:t -> t -> 'a Scalar.t -> t
val special_zeta_out : out:t -> t -> t -> t
val special_zeta_self_scalar : 'a Scalar.t -> t -> t
val special_zeta_self_scalar_out : out:t -> 'a Scalar.t -> t -> t
val split : t -> split_size:int -> dim:int -> t list
val split_with_sizes : t -> split_sizes:int list -> dim:int -> t list
val sqrt_out : out:t -> t -> t
val square_out : out:t -> t -> t
val squeeze_dim : t -> dim:int -> t
val squeeze_dim_ : t -> dim:int -> t
val sspaddmm : t -> mat1:t -> mat2:t -> t
val sspaddmm_out : out:t -> t -> mat1:t -> mat2:t -> t
val stack : t list -> dim:int -> t
val stack_out : out:t -> t list -> dim:int -> t
val std : t -> unbiased:bool -> t
val std_correction : t -> dim:int list -> correction:int -> keepdim:bool -> t
val std_correction_out :
out:t ->
t ->
dim:int list ->
correction:int ->
keepdim:bool ->
t
val std_dim : t -> dim:int list -> unbiased:bool -> keepdim:bool -> t
val std_mean : t -> unbiased:bool -> t * t
val std_mean_correction :
t ->
dim:int list ->
correction:int ->
keepdim:bool ->
t * t
val std_mean_dim : t -> dim:int list -> unbiased:bool -> keepdim:bool -> t * t
val std_out : out:t -> t -> dim:int list -> unbiased:bool -> keepdim:bool -> t
val stft :
t ->
n_fft:int ->
hop_length:int ->
win_length:int ->
window:t option ->
normalized:bool ->
onesided:bool ->
return_complex:bool ->
t
val sub_out : out:t -> t -> t -> t
val subtract : t -> t -> t
val subtract_ : t -> t -> t
val subtract_out : out:t -> t -> t -> t
val sum_dim_intlist :
t ->
dim:int list ->
keepdim:bool ->
dtype:Kind.packed ->
t
val sum_intlist_out :
out:t ->
t ->
dim:int list ->
keepdim:bool ->
dtype:Kind.packed ->
t
val sum_to_size : t -> size:int list -> t
val svd : t -> some:bool -> compute_uv:bool -> t * t * t
val svd_u : u:t -> s:t -> v:t -> t -> some:bool -> compute_uv:bool -> t * t * t
val swapaxes : t -> axis0:int -> axis1:int -> t
val swapaxes_ : t -> axis0:int -> axis1:int -> t
val swapdims : t -> dim0:int -> dim1:int -> t
val swapdims_ : t -> dim0:int -> dim1:int -> t
val symeig : t -> eigenvectors:bool -> upper:bool -> t * t
val symeig_e : e:t -> v:t -> t -> eigenvectors:bool -> upper:bool -> t * t
val take : t -> index:t -> t
val take_along_dim : t -> indices:t -> dim:int -> t
val take_along_dim_out : out:t -> t -> indices:t -> dim:int -> t
val take_out : out:t -> t -> index:t -> t
val tan_out : out:t -> t -> t
val tanh_backward : grad_output:t -> output:t -> t
val tanh_out : out:t -> t -> t
val tensor_split : t -> sections:int -> dim:int -> t list
val tensor_split_indices : t -> indices:int list -> dim:int -> t list
val tensor_split_tensor_indices_or_sections :
t ->
tensor_indices_or_sections:t ->
dim:int ->
t list
val tensordot : t -> t -> dims_self:int list -> dims_other:int list -> t
val tensordot_out :
out:t ->
t ->
t ->
dims_self:int list ->
dims_other:int list ->
t
val threshold_backward : grad_output:t -> t -> threshold:'a Scalar.t -> t
val tile : t -> dims:int list -> t
val to_dense_backward : grad:t -> t -> t
val to_dtype : t -> dtype:Kind.packed -> non_blocking:bool -> copy:bool -> t
val to_mkldnn_backward : grad:t -> t -> t
val to_other : t -> t -> non_blocking:bool -> copy:bool -> t
val to_sparse_sparse_dim : t -> sparse_dim:int -> t
val topk : t -> k:int -> dim:int -> largest:bool -> sorted:bool -> t * t
val topk_values :
values:t ->
indices:t ->
t ->
k:int ->
dim:int ->
largest:bool ->
sorted:bool ->
t * t
val trace_backward : grad:t -> sizes:int list -> t
val transpose : t -> dim0:int -> dim1:int -> t
val transpose_ : t -> dim0:int -> dim1:int -> t
val trapezoid : y:t -> dim:int -> t
val trapezoid_x : y:t -> x:t -> dim:int -> t
val trapz : y:t -> x:t -> dim:int -> t
val trapz_dx : y:t -> dx:float -> dim:int -> t
val triangular_solve :
t ->
a:t ->
upper:bool ->
transpose:bool ->
unitriangular:bool ->
t * t
val triangular_solve_x :
x:t ->
m:t ->
t ->
a:t ->
upper:bool ->
transpose:bool ->
unitriangular:bool ->
t * t
val tril : t -> diagonal:int -> t
val tril_ : t -> diagonal:int -> t
val tril_out : out:t -> t -> diagonal:int -> t
val triplet_margin_loss :
anchor:t ->
positive:t ->
negative:t ->
margin:float ->
p:float ->
eps:float ->
swap:bool ->
reduction:Reduction.t ->
t
val triu : t -> diagonal:int -> t
val triu_ : t -> diagonal:int -> t
val triu_out : out:t -> t -> diagonal:int -> t
val true_divide : t -> t -> t
val true_divide_ : t -> t -> t
val true_divide_out : out:t -> t -> t -> t
val trunc_out : out:t -> t -> t
val type_as : t -> t -> t
val unbind : t -> dim:int -> t list
val unflatten : t -> dim:int -> sizes:int list -> t
val unflatten_dense_tensors : flat:t -> t list -> t list
val unfold : t -> dimension:int -> size:int -> step:int -> t
val unfold_backward :
grad_in:t ->
input_sizes:int list ->
dim:int ->
size:int ->
step:int ->
t
val unique_consecutive :
t ->
return_inverse:bool ->
return_counts:bool ->
dim:int ->
t * t * t
val unique_dim :
t ->
dim:int ->
sorted:bool ->
return_inverse:bool ->
return_counts:bool ->
t * t * t
val unique_dim_consecutive :
t ->
dim:int ->
return_inverse:bool ->
return_counts:bool ->
t * t * t
val unsafe_chunk : t -> chunks:int -> dim:int -> t list
val unsafe_split : t -> split_size:int -> dim:int -> t list
val unsafe_split_with_sizes : t -> split_sizes:int list -> dim:int -> t list
val unsqueeze : t -> dim:int -> t
val unsqueeze_ : t -> dim:int -> t
val upsample_bicubic2d :
t ->
output_size:int list ->
align_corners:bool ->
scales_h:float ->
scales_w:float ->
t
val upsample_bicubic2d_backward :
grad_output:t ->
output_size:int list ->
input_size:int list ->
align_corners:bool ->
scales_h:float ->
scales_w:float ->
t
val upsample_bicubic2d_out :
out:t ->
t ->
output_size:int list ->
align_corners:bool ->
scales_h:float ->
scales_w:float ->
t
val upsample_bilinear2d :
t ->
output_size:int list ->
align_corners:bool ->
scales_h:float ->
scales_w:float ->
t
val upsample_bilinear2d_backward :
grad_output:t ->
output_size:int list ->
input_size:int list ->
align_corners:bool ->
scales_h:float ->
scales_w:float ->
t
val upsample_bilinear2d_out :
out:t ->
t ->
output_size:int list ->
align_corners:bool ->
scales_h:float ->
scales_w:float ->
t
val upsample_linear1d :
t ->
output_size:int list ->
align_corners:bool ->
scales:float ->
t
val upsample_linear1d_backward :
grad_output:t ->
output_size:int list ->
input_size:int list ->
align_corners:bool ->
scales:float ->
t
val upsample_linear1d_out :
out:t ->
t ->
output_size:int list ->
align_corners:bool ->
scales:float ->
t
val upsample_nearest1d : t -> output_size:int list -> scales:float -> t
val upsample_nearest1d_backward :
grad_output:t ->
output_size:int list ->
input_size:int list ->
scales:float ->
t
val upsample_nearest1d_out :
out:t ->
t ->
output_size:int list ->
scales:float ->
t
val upsample_nearest2d :
t ->
output_size:int list ->
scales_h:float ->
scales_w:float ->
t
val upsample_nearest2d_backward :
grad_output:t ->
output_size:int list ->
input_size:int list ->
scales_h:float ->
scales_w:float ->
t
val upsample_nearest2d_out :
out:t ->
t ->
output_size:int list ->
scales_h:float ->
scales_w:float ->
t
val upsample_nearest3d :
t ->
output_size:int list ->
scales_d:float ->
scales_h:float ->
scales_w:float ->
t
val upsample_nearest3d_backward :
grad_output:t ->
output_size:int list ->
input_size:int list ->
scales_d:float ->
scales_h:float ->
scales_w:float ->
t
val upsample_nearest3d_out :
out:t ->
t ->
output_size:int list ->
scales_d:float ->
scales_h:float ->
scales_w:float ->
t
val upsample_trilinear3d :
t ->
output_size:int list ->
align_corners:bool ->
scales_d:float ->
scales_h:float ->
scales_w:float ->
t
val upsample_trilinear3d_backward :
grad_output:t ->
output_size:int list ->
input_size:int list ->
align_corners:bool ->
scales_d:float ->
scales_h:float ->
scales_w:float ->
t
val upsample_trilinear3d_out :
out:t ->
t ->
output_size:int list ->
align_corners:bool ->
scales_d:float ->
scales_h:float ->
scales_w:float ->
t
val value_selecting_reduction_backward :
grad:t ->
dim:int ->
indices:t ->
sizes:int list ->
keepdim:bool ->
t
val vander : x:t -> n:int -> increasing:bool -> t
val var : t -> unbiased:bool -> t
val var_correction : t -> dim:int list -> correction:int -> keepdim:bool -> t
val var_correction_out :
out:t ->
t ->
dim:int list ->
correction:int ->
keepdim:bool ->
t
val var_dim : t -> dim:int list -> unbiased:bool -> keepdim:bool -> t
val var_mean : t -> unbiased:bool -> t * t
val var_mean_correction :
t ->
dim:int list ->
correction:int ->
keepdim:bool ->
t * t
val var_mean_dim : t -> dim:int list -> unbiased:bool -> keepdim:bool -> t * t
val var_out : out:t -> t -> dim:int list -> unbiased:bool -> keepdim:bool -> t
val vdot_out : out:t -> t -> t -> t
val view : t -> size:int list -> t
val view_as : t -> t -> t
val view_as_complex : t -> t
val view_as_real : t -> t
val vsplit : t -> sections:int -> t list
val vsplit_array : t -> indices:int list -> t list
val vstack_out : out:t -> t list -> t
val where : condition:t -> t list
val where_scalarother : condition:t -> t -> 'a Scalar.t -> t
val where_scalarself : condition:t -> 'a Scalar.t -> t -> t
val where_self : condition:t -> t -> t -> t
val xlogy_outscalar_other : out:t -> t -> 'a Scalar.t -> t
val xlogy_outscalar_self : out:t -> 'a Scalar.t -> t -> t
val xlogy_outtensor : out:t -> t -> t -> t
val zeros_out : out:t -> size:int list -> t
val new_tensor : unit -> t
val float_vec : ?kind:[ `double | `float | `half ] -> float list -> t
val int_vec :
?kind:[ `int | `int16 | `int64 | `int8 | `uint8 ] ->
int list ->
t
val shape : t -> int list
val shape1_exn : t -> int