= 1024" x-on:close-sidebar="sidebar=window.innerWidth >= 1024 && true">
Legend:
Library
Module
Module type
Parameter
Class
Class type
Library
Module
Module type
Parameter
Class
Class type
module C : sig ... end
val to_tensor_list : unit Ctypes.ptr Ctypes.ptr -> unit Ctypes.ptr list
val __and__ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __and__tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __iand__ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __iand__tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __ilshift__ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __ilshift__tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __ior__ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __ior__tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __irshift__ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __irshift__tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __ixor__ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __ixor__tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __lshift__ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __lshift__tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __or__ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __or__tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __rshift__ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __rshift__tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __xor__ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val __xor__tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val _adaptive_avg_pool2d :
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val _adaptive_avg_pool2d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val _adaptive_avg_pool3d :
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val _adaptive_avg_pool3d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val _add_batch_dim :
unit Ctypes.ptr ->
batch_dim:int ->
level:int ->
C.TensorG.t
val _add_relu : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val _add_relu_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val _add_relu_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val _add_relu_scalar : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val _add_relu_scalar_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val _aminmax : unit Ctypes.ptr -> C.TensorG.t * C.TensorG.t
val _aminmax_dim :
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val _amp_update_scale_ :
unit Ctypes.ptr ->
growth_tracker:unit Ctypes.ptr ->
found_inf:unit Ctypes.ptr ->
scale_growth_factor:float ->
scale_backoff_factor:float ->
growth_interval:int ->
C.TensorG.t
val _baddbmm_mkl_ :
unit Ctypes.ptr ->
batch1:unit Ctypes.ptr ->
batch2:unit Ctypes.ptr ->
C.TensorG.t
val _cast_byte : unit Ctypes.ptr -> non_blocking:bool -> C.TensorG.t
val _cast_char : unit Ctypes.ptr -> non_blocking:bool -> C.TensorG.t
val _cast_double : unit Ctypes.ptr -> non_blocking:bool -> C.TensorG.t
val _cast_float : unit Ctypes.ptr -> non_blocking:bool -> C.TensorG.t
val _cast_half : unit Ctypes.ptr -> non_blocking:bool -> C.TensorG.t
val _cast_int : unit Ctypes.ptr -> non_blocking:bool -> C.TensorG.t
val _cast_long : unit Ctypes.ptr -> non_blocking:bool -> C.TensorG.t
val _cast_short : unit Ctypes.ptr -> non_blocking:bool -> C.TensorG.t
val _cat : C.TensorG.t list -> dim:int -> C.TensorG.t
val _cat_out :
out:unit Ctypes.ptr ->
C.TensorG.t list ->
dim:int ->
C.TensorG.t
val _cdist_backward :
grad:unit Ctypes.ptr ->
x1:unit Ctypes.ptr ->
x2:unit Ctypes.ptr ->
p:float ->
cdist:unit Ctypes.ptr ->
C.TensorG.t
val _cholesky_solve_helper :
unit Ctypes.ptr ->
a:unit Ctypes.ptr ->
upper:bool ->
C.TensorG.t
val _coalesce : unit Ctypes.ptr -> C.TensorG.t
val _coalesced_ : unit Ctypes.ptr -> coalesced:bool -> C.TensorG.t
val _compute_linear_combination :
unit Ctypes.ptr ->
coefficients:unit Ctypes.ptr ->
C.TensorG.t
val _compute_linear_combination_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
coefficients:unit Ctypes.ptr ->
C.TensorG.t
val _conj : unit Ctypes.ptr -> C.TensorG.t
val _conj_physical : unit Ctypes.ptr -> C.TensorG.t
val _conv_depthwise2d :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
kernel_size:int list ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
C.TensorG.t
val _conv_depthwise2d_backward :
grad_input:unit Ctypes.ptr ->
grad_weight:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
C.TensorG.t * C.TensorG.t
val _conv_depthwise2d_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
kernel_size:int list ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
C.TensorG.t
val _convert_indices_from_coo_to_csr :
unit Ctypes.ptr ->
size:int ->
out_int32:bool ->
C.TensorG.t
val _convert_indices_from_coo_to_csr_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
size:int ->
out_int32:bool ->
C.TensorG.t
val _convolution :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
transposed:bool ->
output_padding:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
cudnn_enabled:bool ->
allow_tf32:bool ->
C.TensorG.t
val _convolution_deprecated :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
transposed:bool ->
output_padding:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
cudnn_enabled:bool ->
C.TensorG.t
val _convolution_mode :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:string ->
dilation:int list ->
groups:int ->
C.TensorG.t
val _convolution_nogroup :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
transposed:bool ->
output_padding:int list ->
C.TensorG.t
val _copy_from :
unit Ctypes.ptr ->
dst:unit Ctypes.ptr ->
non_blocking:bool ->
C.TensorG.t
val _copy_from_and_resize :
unit Ctypes.ptr ->
dst:unit Ctypes.ptr ->
C.TensorG.t
val _ctc_loss :
log_probs:unit Ctypes.ptr ->
targets:unit Ctypes.ptr ->
input_lengths:int list ->
target_lengths:int list ->
blank:int ->
zero_infinity:bool ->
C.TensorG.t * C.TensorG.t
val _ctc_loss_backward :
grad:unit Ctypes.ptr ->
log_probs:unit Ctypes.ptr ->
targets:unit Ctypes.ptr ->
input_lengths:int list ->
target_lengths:int list ->
neg_log_likelihood:unit Ctypes.ptr ->
log_alpha:unit Ctypes.ptr ->
blank:int ->
zero_infinity:bool ->
C.TensorG.t
val _cudnn_ctc_loss :
log_probs:unit Ctypes.ptr ->
targets:unit Ctypes.ptr ->
input_lengths:int list ->
target_lengths:int list ->
blank:int ->
deterministic:bool ->
zero_infinity:bool ->
C.TensorG.t * C.TensorG.t
val _cudnn_init_dropout_state :
dropout:float ->
train:bool ->
dropout_seed:int ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val _cudnn_rnn :
unit Ctypes.ptr ->
weight:C.TensorG.t list ->
weight_stride0:int ->
weight_buf:unit Ctypes.ptr option ->
hx:unit Ctypes.ptr ->
cx:unit Ctypes.ptr option ->
mode:int ->
hidden_size:int ->
proj_size:int ->
num_layers:int ->
batch_first:bool ->
dropout:float ->
train:bool ->
bidirectional:bool ->
batch_sizes:int list ->
dropout_state:unit Ctypes.ptr option ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val _cudnn_rnn_flatten_weight :
weight_arr:C.TensorG.t list ->
weight_stride0:int ->
input_size:int ->
mode:int ->
hidden_size:int ->
proj_size:int ->
num_layers:int ->
batch_first:bool ->
bidirectional:bool ->
C.TensorG.t
val _det_lu_based_helper :
unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val _det_lu_based_helper_backward_helper :
det_grad:unit Ctypes.ptr ->
det:unit Ctypes.ptr ->
unit Ctypes.ptr ->
lu:unit Ctypes.ptr ->
pivs:unit Ctypes.ptr ->
C.TensorG.t
val _dim_arange : like:unit Ctypes.ptr -> dim:int -> C.TensorG.t
val _dirichlet_grad :
x:unit Ctypes.ptr ->
alpha:unit Ctypes.ptr ->
total:unit Ctypes.ptr ->
C.TensorG.t
val _embedding_bag :
weight:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
offsets:unit Ctypes.ptr ->
scale_grad_by_freq:bool ->
mode:int ->
sparse:bool ->
per_sample_weights:unit Ctypes.ptr option ->
include_last_offset:bool ->
padding_idx:int ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val _embedding_bag_backward :
grad:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
offsets:unit Ctypes.ptr ->
offset2bag:unit Ctypes.ptr ->
bag_size:unit Ctypes.ptr ->
maximum_indices:unit Ctypes.ptr ->
num_weights:int ->
scale_grad_by_freq:bool ->
mode:int ->
sparse:bool ->
per_sample_weights:unit Ctypes.ptr option ->
padding_idx:int ->
C.TensorG.t
val _embedding_bag_dense_backward :
grad:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
offset2bag:unit Ctypes.ptr ->
bag_size:unit Ctypes.ptr ->
maximum_indices:unit Ctypes.ptr ->
num_weights:int ->
scale_grad_by_freq:bool ->
mode:int ->
per_sample_weights:unit Ctypes.ptr option ->
padding_idx:int ->
C.TensorG.t
val _embedding_bag_forward_only :
weight:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
offsets:unit Ctypes.ptr ->
scale_grad_by_freq:bool ->
mode:int ->
sparse:bool ->
per_sample_weights:unit Ctypes.ptr option ->
include_last_offset:bool ->
padding_idx:int ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val _embedding_bag_per_sample_weights_backward :
grad:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
offsets:unit Ctypes.ptr ->
offset2bag:unit Ctypes.ptr ->
mode:int ->
padding_idx:int ->
C.TensorG.t
val _embedding_bag_sparse_backward :
grad:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
offsets:unit Ctypes.ptr ->
offset2bag:unit Ctypes.ptr ->
bag_size:unit Ctypes.ptr ->
num_weights:int ->
scale_grad_by_freq:bool ->
mode:int ->
per_sample_weights:unit Ctypes.ptr option ->
padding_idx:int ->
C.TensorG.t
val _empty_affine_quantized :
size:int list ->
options:(Kind.packed * Device.t) ->
scale:float ->
zero_point:int ->
C.TensorG.t
val _empty_per_channel_affine_quantized :
size:int list ->
scales:unit Ctypes.ptr ->
zero_points:unit Ctypes.ptr ->
axis:int ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val _euclidean_dist : x1:unit Ctypes.ptr -> x2:unit Ctypes.ptr -> C.TensorG.t
val _fake_quantize_learnable_per_channel_affine :
unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
zero_point:unit Ctypes.ptr ->
axis:int ->
quant_min:int ->
quant_max:int ->
grad_factor:float ->
C.TensorG.t
val _fake_quantize_learnable_per_channel_affine_backward :
grad:unit Ctypes.ptr ->
unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
zero_point:unit Ctypes.ptr ->
axis:int ->
quant_min:int ->
quant_max:int ->
grad_factor:float ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val _fake_quantize_learnable_per_tensor_affine :
unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
zero_point:unit Ctypes.ptr ->
quant_min:int ->
quant_max:int ->
grad_factor:float ->
C.TensorG.t
val _fake_quantize_learnable_per_tensor_affine_backward :
grad:unit Ctypes.ptr ->
unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
zero_point:unit Ctypes.ptr ->
quant_min:int ->
quant_max:int ->
grad_factor:float ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val _fake_quantize_per_tensor_affine_cachemask_tensor_qparams :
unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
zero_point:unit Ctypes.ptr ->
fake_quant_enabled:unit Ctypes.ptr ->
quant_min:int ->
quant_max:int ->
C.TensorG.t * C.TensorG.t
val _fft_c2c :
unit Ctypes.ptr ->
dim:int list ->
normalization:int ->
forward:bool ->
C.TensorG.t
val _fft_c2c_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int list ->
normalization:int ->
forward:bool ->
C.TensorG.t
val _fft_c2r :
unit Ctypes.ptr ->
dim:int list ->
normalization:int ->
last_dim_size:int ->
C.TensorG.t
val _fft_c2r_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int list ->
normalization:int ->
last_dim_size:int ->
C.TensorG.t
val _fft_r2c :
unit Ctypes.ptr ->
dim:int list ->
normalization:int ->
onesided:bool ->
C.TensorG.t
val _fft_r2c_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int list ->
normalization:int ->
onesided:bool ->
C.TensorG.t
val _fused_dropout : unit Ctypes.ptr -> p:float -> C.TensorG.t * C.TensorG.t
val _fused_moving_avg_obs_fq_helper :
unit Ctypes.ptr ->
observer_on:unit Ctypes.ptr ->
fake_quant_on:unit Ctypes.ptr ->
running_min:unit Ctypes.ptr ->
running_max:unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
zero_point:unit Ctypes.ptr ->
averaging_const:float ->
quant_min:int ->
quant_max:int ->
ch_axis:int ->
per_row_fake_quant:bool ->
symmetric_quant:bool ->
C.TensorG.t * C.TensorG.t
val _fw_primal : unit Ctypes.ptr -> level:int -> C.TensorG.t
val _gather_sparse_backward :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
grad:unit Ctypes.ptr ->
C.TensorG.t
val _grid_sampler_2d_cpu_fallback :
unit Ctypes.ptr ->
grid:unit Ctypes.ptr ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
C.TensorG.t
val _grid_sampler_2d_cpu_fallback_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
grid:unit Ctypes.ptr ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
C.TensorG.t * C.TensorG.t
val _index_copy_ :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
source:unit Ctypes.ptr ->
C.TensorG.t
val _index_put_impl_ :
unit Ctypes.ptr ->
indices:unit Ctypes.ptr option list ->
values:unit Ctypes.ptr ->
accumulate:bool ->
unsafe:bool ->
C.TensorG.t
val _indices : unit Ctypes.ptr -> C.TensorG.t
val _inverse_helper : unit Ctypes.ptr -> C.TensorG.t
val _linalg_inv_out_helper_ :
unit Ctypes.ptr ->
infos_lu:unit Ctypes.ptr ->
infos_getri:unit Ctypes.ptr ->
C.TensorG.t
val _linalg_qr_helper :
unit Ctypes.ptr ->
mode:string ->
C.TensorG.t * C.TensorG.t
val _log_softmax :
unit Ctypes.ptr ->
dim:int ->
half_to_float:bool ->
C.TensorG.t
val _log_softmax_backward_data :
grad_output:unit Ctypes.ptr ->
output:unit Ctypes.ptr ->
dim:int ->
unit Ctypes.ptr ->
C.TensorG.t
val _log_softmax_backward_data_out :
out:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
output:unit Ctypes.ptr ->
dim:int ->
unit Ctypes.ptr ->
C.TensorG.t
val _log_softmax_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
half_to_float:bool ->
C.TensorG.t
val _logcumsumexp : unit Ctypes.ptr -> dim:int -> C.TensorG.t
val _logcumsumexp_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
C.TensorG.t
val _lu_with_info :
unit Ctypes.ptr ->
pivot:bool ->
check_errors:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val _make_dual :
primal:unit Ctypes.ptr ->
tangent:unit Ctypes.ptr ->
level:int ->
C.TensorG.t
val _make_per_channel_quantized_tensor :
unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
zero_point:unit Ctypes.ptr ->
axis:int ->
C.TensorG.t
val _make_per_tensor_quantized_tensor :
unit Ctypes.ptr ->
scale:float ->
zero_point:int ->
C.TensorG.t
val _masked_scale :
unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
scale:float ->
C.TensorG.t
val _mkldnn_reshape : unit Ctypes.ptr -> shape:int list -> C.TensorG.t
val _mkldnn_transpose : unit Ctypes.ptr -> dim0:int -> dim1:int -> C.TensorG.t
val _mkldnn_transpose_ : unit Ctypes.ptr -> dim0:int -> dim1:int -> C.TensorG.t
val _neg_view : unit Ctypes.ptr -> C.TensorG.t
val _nnpack_spatial_convolution :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
padding:int list ->
stride:int list ->
C.TensorG.t
val _nnpack_spatial_convolution_backward_input :
unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
padding:int list ->
C.TensorG.t
val _nnpack_spatial_convolution_backward_weight :
unit Ctypes.ptr ->
weightsize:int list ->
grad_output:unit Ctypes.ptr ->
padding:int list ->
C.TensorG.t
val _pack_padded_sequence :
unit Ctypes.ptr ->
lengths:unit Ctypes.ptr ->
batch_first:bool ->
C.TensorG.t * C.TensorG.t
val _pack_padded_sequence_backward :
grad:unit Ctypes.ptr ->
input_size:int list ->
batch_sizes:unit Ctypes.ptr ->
batch_first:bool ->
C.TensorG.t
val _pad_packed_sequence :
data:unit Ctypes.ptr ->
batch_sizes:unit Ctypes.ptr ->
batch_first:bool ->
padding_value:unit Ctypes.ptr ->
total_length:int ->
C.TensorG.t * C.TensorG.t
val _pdist_backward :
grad:unit Ctypes.ptr ->
unit Ctypes.ptr ->
p:float ->
pdist:unit Ctypes.ptr ->
C.TensorG.t
val _pin_memory : unit Ctypes.ptr -> device:Device.t -> C.TensorG.t
val _remove_batch_dim :
unit Ctypes.ptr ->
level:int ->
batch_size:int ->
out_dim:int ->
C.TensorG.t
val _reshape_alias :
unit Ctypes.ptr ->
size:int list ->
stride:int list ->
C.TensorG.t
val _reshape_from_tensor :
unit Ctypes.ptr ->
shape:unit Ctypes.ptr ->
C.TensorG.t
val _rowwise_prune :
weight:unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
compressed_indices_dtype:Kind.packed ->
C.TensorG.t * C.TensorG.t
val _s_where :
condition:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val _sample_dirichlet : unit Ctypes.ptr -> C.TensorG.t
val _saturate_weight_to_fp16 : weight:unit Ctypes.ptr -> C.TensorG.t
val _segment_reduce_backward :
grad:unit Ctypes.ptr ->
output:unit Ctypes.ptr ->
data:unit Ctypes.ptr ->
reduce:string ->
lengths:unit Ctypes.ptr option ->
axis:int ->
C.TensorG.t
val _shape_as_tensor : unit Ctypes.ptr -> C.TensorG.t
val _sobol_engine_draw :
quasi:unit Ctypes.ptr ->
n:int ->
sobolstate:unit Ctypes.ptr ->
dimension:int ->
num_generated:int ->
dtype:Kind.packed ->
C.TensorG.t * C.TensorG.t
val _sobol_engine_ff_ :
unit Ctypes.ptr ->
n:int ->
sobolstate:unit Ctypes.ptr ->
dimension:int ->
num_generated:int ->
C.TensorG.t
val _sobol_engine_initialize_state_ :
unit Ctypes.ptr ->
dimension:int ->
C.TensorG.t
val _sobol_engine_scramble_ :
unit Ctypes.ptr ->
ltm:unit Ctypes.ptr ->
dimension:int ->
C.TensorG.t
val _softmax : unit Ctypes.ptr -> dim:int -> half_to_float:bool -> C.TensorG.t
val _softmax_backward_data :
grad_output:unit Ctypes.ptr ->
output:unit Ctypes.ptr ->
dim:int ->
unit Ctypes.ptr ->
C.TensorG.t
val _softmax_backward_data_out :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
output:unit Ctypes.ptr ->
dim:int ->
unit Ctypes.ptr ->
C.TensorG.t
val _softmax_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
half_to_float:bool ->
C.TensorG.t
val _solve_helper :
unit Ctypes.ptr ->
a:unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val _sparse_addmm :
unit Ctypes.ptr ->
sparse:unit Ctypes.ptr ->
dense:unit Ctypes.ptr ->
C.TensorG.t
val _sparse_coo_tensor_unsafe :
indices:unit Ctypes.ptr ->
values:unit Ctypes.ptr ->
size:int list ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val _sparse_coo_tensor_with_dims :
sparse_dim:int ->
dense_dim:int ->
size:int list ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val _sparse_coo_tensor_with_dims_and_tensors :
sparse_dim:int ->
dense_dim:int ->
size:int list ->
indices:unit Ctypes.ptr ->
values:unit Ctypes.ptr ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val _sparse_csr_tensor_unsafe :
crow_indices:unit Ctypes.ptr ->
col_indices:unit Ctypes.ptr ->
values:unit Ctypes.ptr ->
size:int list ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val _sparse_log_softmax :
unit Ctypes.ptr ->
dim:int ->
half_to_float:bool ->
C.TensorG.t
val _sparse_log_softmax_backward_data :
grad_output:unit Ctypes.ptr ->
output:unit Ctypes.ptr ->
dim:int ->
unit Ctypes.ptr ->
C.TensorG.t
val _sparse_log_softmax_int :
unit Ctypes.ptr ->
dim:int ->
dtype:Kind.packed ->
C.TensorG.t
val _sparse_mask_helper :
tr:unit Ctypes.ptr ->
mask_indices:unit Ctypes.ptr ->
C.TensorG.t
val _sparse_mm : sparse:unit Ctypes.ptr -> dense:unit Ctypes.ptr -> C.TensorG.t
val _sparse_softmax :
unit Ctypes.ptr ->
dim:int ->
half_to_float:bool ->
C.TensorG.t
val _sparse_softmax_backward_data :
grad_output:unit Ctypes.ptr ->
output:unit Ctypes.ptr ->
dim:int ->
unit Ctypes.ptr ->
C.TensorG.t
val _sparse_softmax_int :
unit Ctypes.ptr ->
dim:int ->
dtype:Kind.packed ->
C.TensorG.t
val _sparse_sparse_matmul : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val _sparse_sum : unit Ctypes.ptr -> C.TensorG.t
val _sparse_sum_backward :
grad:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int list ->
C.TensorG.t
val _sparse_sum_dim : unit Ctypes.ptr -> dim:int list -> C.TensorG.t
val _sparse_sum_dim_dtype :
unit Ctypes.ptr ->
dim:int list ->
dtype:Kind.packed ->
C.TensorG.t
val _sparse_sum_dtype : unit Ctypes.ptr -> dtype:Kind.packed -> C.TensorG.t
val _stack : C.TensorG.t list -> dim:int -> C.TensorG.t
val _stack_out :
out:unit Ctypes.ptr ->
C.TensorG.t list ->
dim:int ->
C.TensorG.t
val _standard_gamma : unit Ctypes.ptr -> C.TensorG.t
val _standard_gamma_grad :
unit Ctypes.ptr ->
output:unit Ctypes.ptr ->
C.TensorG.t
val _svd_helper :
unit Ctypes.ptr ->
some:bool ->
compute_uv:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val _symeig_helper :
unit Ctypes.ptr ->
eigenvectors:bool ->
upper:bool ->
C.TensorG.t * C.TensorG.t
val _test_ambiguous_defaults :
dummy:unit Ctypes.ptr ->
a:int ->
b:int ->
C.TensorG.t
val _test_ambiguous_defaults_b :
dummy:unit Ctypes.ptr ->
a:int ->
b:string ->
C.TensorG.t
val _test_optional_filled_intlist :
values:unit Ctypes.ptr ->
addends:int list ->
C.TensorG.t
val _test_optional_intlist :
values:unit Ctypes.ptr ->
addends:int list ->
C.TensorG.t
val _test_serialization_subcmul :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val _test_string_default :
dummy:unit Ctypes.ptr ->
a:string ->
b:string ->
C.TensorG.t
val _thnn_differentiable_gru_cell_backward :
grad_hy:unit Ctypes.ptr ->
input_gates:unit Ctypes.ptr ->
hidden_gates:unit Ctypes.ptr ->
hx:unit Ctypes.ptr ->
input_bias:unit Ctypes.ptr option ->
hidden_bias:unit Ctypes.ptr option ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val _thnn_differentiable_lstm_cell_backward :
grad_hy:unit Ctypes.ptr option ->
grad_cy:unit Ctypes.ptr option ->
input_gates:unit Ctypes.ptr ->
hidden_gates:unit Ctypes.ptr ->
input_bias:unit Ctypes.ptr option ->
hidden_bias:unit Ctypes.ptr option ->
cx:unit Ctypes.ptr ->
cy:unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val _thnn_fused_gru_cell :
input_gates:unit Ctypes.ptr ->
hidden_gates:unit Ctypes.ptr ->
hx:unit Ctypes.ptr ->
input_bias:unit Ctypes.ptr option ->
hidden_bias:unit Ctypes.ptr option ->
C.TensorG.t * C.TensorG.t
val _thnn_fused_gru_cell_backward :
grad_hy:unit Ctypes.ptr ->
workspace:unit Ctypes.ptr ->
has_bias:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val _thnn_fused_lstm_cell :
input_gates:unit Ctypes.ptr ->
hidden_gates:unit Ctypes.ptr ->
cx:unit Ctypes.ptr ->
input_bias:unit Ctypes.ptr option ->
hidden_bias:unit Ctypes.ptr option ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val _thnn_fused_lstm_cell_backward :
grad_hy:unit Ctypes.ptr option ->
grad_cy:unit Ctypes.ptr option ->
cx:unit Ctypes.ptr ->
cy:unit Ctypes.ptr ->
workspace:unit Ctypes.ptr ->
has_bias:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val _to_copy :
unit Ctypes.ptr ->
options:(Kind.packed * Device.t) ->
non_blocking:bool ->
C.TensorG.t
val _to_cpu : C.TensorG.t list -> unit Ctypes.ptr list
val _trilinear :
i1:unit Ctypes.ptr ->
i2:unit Ctypes.ptr ->
i3:unit Ctypes.ptr ->
expand1:int list ->
expand2:int list ->
expand3:int list ->
sumdim:int list ->
unroll_dim:int ->
C.TensorG.t
val _unique :
unit Ctypes.ptr ->
sorted:bool ->
return_inverse:bool ->
C.TensorG.t * C.TensorG.t
val _unique2 :
unit Ctypes.ptr ->
sorted:bool ->
return_inverse:bool ->
return_counts:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val _unpack_dual :
dual:unit Ctypes.ptr ->
level:int ->
C.TensorG.t * C.TensorG.t
val _unsafe_view : unit Ctypes.ptr -> size:int list -> C.TensorG.t
val _values : unit Ctypes.ptr -> C.TensorG.t
val _weight_norm :
v:unit Ctypes.ptr ->
g:unit Ctypes.ptr ->
dim:int ->
C.TensorG.t
val _weight_norm_cuda_interface :
v:unit Ctypes.ptr ->
g:unit Ctypes.ptr ->
dim:int ->
C.TensorG.t * C.TensorG.t
val _weight_norm_cuda_interface_backward :
grad_w:unit Ctypes.ptr ->
saved_v:unit Ctypes.ptr ->
saved_g:unit Ctypes.ptr ->
saved_norms:unit Ctypes.ptr ->
dim:int ->
C.TensorG.t * C.TensorG.t
val _weight_norm_differentiable_backward :
grad_w:unit Ctypes.ptr ->
saved_v:unit Ctypes.ptr ->
saved_g:unit Ctypes.ptr ->
saved_norms:unit Ctypes.ptr ->
dim:int ->
C.TensorG.t * C.TensorG.t
val abs : unit Ctypes.ptr -> C.TensorG.t
val abs_ : unit Ctypes.ptr -> C.TensorG.t
val abs_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val absolute : unit Ctypes.ptr -> C.TensorG.t
val absolute_ : unit Ctypes.ptr -> C.TensorG.t
val absolute_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val acos : unit Ctypes.ptr -> C.TensorG.t
val acos_ : unit Ctypes.ptr -> C.TensorG.t
val acos_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val acosh : unit Ctypes.ptr -> C.TensorG.t
val acosh_ : unit Ctypes.ptr -> C.TensorG.t
val acosh_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val adaptive_avg_pool1d :
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val adaptive_avg_pool2d :
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val adaptive_avg_pool2d_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val adaptive_avg_pool3d :
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val adaptive_avg_pool3d_backward :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val adaptive_avg_pool3d_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val adaptive_max_pool1d :
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t * C.TensorG.t
val adaptive_max_pool2d :
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t * C.TensorG.t
val adaptive_max_pool2d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val adaptive_max_pool2d_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val adaptive_max_pool2d_out :
out:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t * C.TensorG.t
val adaptive_max_pool3d :
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t * C.TensorG.t
val adaptive_max_pool3d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val adaptive_max_pool3d_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val adaptive_max_pool3d_out :
out:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t * C.TensorG.t
val add : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val add_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val add_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val add_scalar : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val add_scalar_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val addbmm :
unit Ctypes.ptr ->
batch1:unit Ctypes.ptr ->
batch2:unit Ctypes.ptr ->
C.TensorG.t
val addbmm_ :
unit Ctypes.ptr ->
batch1:unit Ctypes.ptr ->
batch2:unit Ctypes.ptr ->
C.TensorG.t
val addbmm_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
batch1:unit Ctypes.ptr ->
batch2:unit Ctypes.ptr ->
C.TensorG.t
val addcdiv :
unit Ctypes.ptr ->
tensor1:unit Ctypes.ptr ->
tensor2:unit Ctypes.ptr ->
C.TensorG.t
val addcdiv_ :
unit Ctypes.ptr ->
tensor1:unit Ctypes.ptr ->
tensor2:unit Ctypes.ptr ->
C.TensorG.t
val addcdiv_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
tensor1:unit Ctypes.ptr ->
tensor2:unit Ctypes.ptr ->
C.TensorG.t
val addcmul :
unit Ctypes.ptr ->
tensor1:unit Ctypes.ptr ->
tensor2:unit Ctypes.ptr ->
C.TensorG.t
val addcmul_ :
unit Ctypes.ptr ->
tensor1:unit Ctypes.ptr ->
tensor2:unit Ctypes.ptr ->
C.TensorG.t
val addcmul_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
tensor1:unit Ctypes.ptr ->
tensor2:unit Ctypes.ptr ->
C.TensorG.t
val addmm :
unit Ctypes.ptr ->
mat1:unit Ctypes.ptr ->
mat2:unit Ctypes.ptr ->
C.TensorG.t
val addmm_ :
unit Ctypes.ptr ->
mat1:unit Ctypes.ptr ->
mat2:unit Ctypes.ptr ->
C.TensorG.t
val addmm_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
mat1:unit Ctypes.ptr ->
mat2:unit Ctypes.ptr ->
C.TensorG.t
val addmv :
unit Ctypes.ptr ->
mat:unit Ctypes.ptr ->
vec:unit Ctypes.ptr ->
C.TensorG.t
val addmv_ :
unit Ctypes.ptr ->
mat:unit Ctypes.ptr ->
vec:unit Ctypes.ptr ->
C.TensorG.t
val addmv_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
mat:unit Ctypes.ptr ->
vec:unit Ctypes.ptr ->
C.TensorG.t
val addr :
unit Ctypes.ptr ->
vec1:unit Ctypes.ptr ->
vec2:unit Ctypes.ptr ->
C.TensorG.t
val addr_ :
unit Ctypes.ptr ->
vec1:unit Ctypes.ptr ->
vec2:unit Ctypes.ptr ->
C.TensorG.t
val addr_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
vec1:unit Ctypes.ptr ->
vec2:unit Ctypes.ptr ->
C.TensorG.t
val affine_grid_generator :
theta:unit Ctypes.ptr ->
size:int list ->
align_corners:bool ->
C.TensorG.t
val affine_grid_generator_backward :
grad:unit Ctypes.ptr ->
size:int list ->
align_corners:bool ->
C.TensorG.t
val alias : unit Ctypes.ptr -> C.TensorG.t
val align_as : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val align_tensors : C.TensorG.t list -> unit Ctypes.ptr list
val all : unit Ctypes.ptr -> C.TensorG.t
val all_all_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val all_dim : unit Ctypes.ptr -> dim:int -> keepdim:bool -> C.TensorG.t
val all_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t
val alpha_dropout : unit Ctypes.ptr -> p:float -> train:bool -> C.TensorG.t
val alpha_dropout_ : unit Ctypes.ptr -> p:float -> train:bool -> C.TensorG.t
val amax : unit Ctypes.ptr -> dim:int list -> keepdim:bool -> C.TensorG.t
val amax_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int list ->
keepdim:bool ->
C.TensorG.t
val amin : unit Ctypes.ptr -> dim:int list -> keepdim:bool -> C.TensorG.t
val amin_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int list ->
keepdim:bool ->
C.TensorG.t
val aminmax :
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val aminmax_out :
min:unit Ctypes.ptr ->
max:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val angle : unit Ctypes.ptr -> C.TensorG.t
val angle_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val any : unit Ctypes.ptr -> C.TensorG.t
val any_all_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val any_dim : unit Ctypes.ptr -> dim:int -> keepdim:bool -> C.TensorG.t
val any_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t
val arange :
end_:unit Ctypes.ptr ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val arange_out : out:unit Ctypes.ptr -> end_:unit Ctypes.ptr -> C.TensorG.t
val arange_start :
start:unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val arange_start_out :
out:unit Ctypes.ptr ->
start:unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
C.TensorG.t
val arange_start_step :
start:unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
step:unit Ctypes.ptr ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val arccos : unit Ctypes.ptr -> C.TensorG.t
val arccos_ : unit Ctypes.ptr -> C.TensorG.t
val arccos_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val arccosh : unit Ctypes.ptr -> C.TensorG.t
val arccosh_ : unit Ctypes.ptr -> C.TensorG.t
val arccosh_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val arcsin : unit Ctypes.ptr -> C.TensorG.t
val arcsin_ : unit Ctypes.ptr -> C.TensorG.t
val arcsin_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val arcsinh : unit Ctypes.ptr -> C.TensorG.t
val arcsinh_ : unit Ctypes.ptr -> C.TensorG.t
val arcsinh_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val arctan : unit Ctypes.ptr -> C.TensorG.t
val arctan_ : unit Ctypes.ptr -> C.TensorG.t
val arctan_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val arctanh : unit Ctypes.ptr -> C.TensorG.t
val arctanh_ : unit Ctypes.ptr -> C.TensorG.t
val arctanh_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val argmax : unit Ctypes.ptr -> dim:int -> keepdim:bool -> C.TensorG.t
val argmax_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t
val argmin : unit Ctypes.ptr -> dim:int -> keepdim:bool -> C.TensorG.t
val argmin_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t
val argsort : unit Ctypes.ptr -> dim:int -> descending:bool -> C.TensorG.t
val as_strided :
unit Ctypes.ptr ->
size:int list ->
stride:int list ->
storage_offset:int ->
C.TensorG.t
val as_strided_ :
unit Ctypes.ptr ->
size:int list ->
stride:int list ->
storage_offset:int ->
C.TensorG.t
val asin : unit Ctypes.ptr -> C.TensorG.t
val asin_ : unit Ctypes.ptr -> C.TensorG.t
val asin_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val asinh : unit Ctypes.ptr -> C.TensorG.t
val asinh_ : unit Ctypes.ptr -> C.TensorG.t
val asinh_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val atan : unit Ctypes.ptr -> C.TensorG.t
val atan2 : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val atan2_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val atan2_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val atan_ : unit Ctypes.ptr -> C.TensorG.t
val atan_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val atanh : unit Ctypes.ptr -> C.TensorG.t
val atanh_ : unit Ctypes.ptr -> C.TensorG.t
val atanh_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val atleast_1d : unit Ctypes.ptr -> C.TensorG.t
val atleast_1d_sequence : C.TensorG.t list -> unit Ctypes.ptr list
val atleast_2d : unit Ctypes.ptr -> C.TensorG.t
val atleast_2d_sequence : C.TensorG.t list -> unit Ctypes.ptr list
val atleast_3d : unit Ctypes.ptr -> C.TensorG.t
val atleast_3d_sequence : C.TensorG.t list -> unit Ctypes.ptr list
val avg_pool1d :
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
C.TensorG.t
val avg_pool2d :
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
C.TensorG.t
val avg_pool2d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
C.TensorG.t
val avg_pool2d_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
C.TensorG.t
val avg_pool2d_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
C.TensorG.t
val avg_pool3d :
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
C.TensorG.t
val avg_pool3d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
C.TensorG.t
val avg_pool3d_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
C.TensorG.t
val avg_pool3d_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
ceil_mode:bool ->
count_include_pad:bool ->
divisor_override:int ->
C.TensorG.t
val baddbmm :
unit Ctypes.ptr ->
batch1:unit Ctypes.ptr ->
batch2:unit Ctypes.ptr ->
C.TensorG.t
val baddbmm_ :
unit Ctypes.ptr ->
batch1:unit Ctypes.ptr ->
batch2:unit Ctypes.ptr ->
C.TensorG.t
val baddbmm_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
batch1:unit Ctypes.ptr ->
batch2:unit Ctypes.ptr ->
C.TensorG.t
val bartlett_window :
window_length:int ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val bartlett_window_periodic :
window_length:int ->
periodic:bool ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val batch_norm :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
bias:unit Ctypes.ptr option ->
running_mean:unit Ctypes.ptr option ->
running_var:unit Ctypes.ptr option ->
training:bool ->
momentum:float ->
eps:float ->
cudnn_enabled:bool ->
C.TensorG.t
val batch_norm_backward_elemt :
grad_out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
mean:unit Ctypes.ptr ->
invstd:unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
mean_dy:unit Ctypes.ptr ->
mean_dy_xmu:unit Ctypes.ptr ->
count:unit Ctypes.ptr ->
C.TensorG.t
val batch_norm_backward_reduce :
grad_out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
mean:unit Ctypes.ptr ->
invstd:unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
input_g:bool ->
weight_g:bool ->
bias_g:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val batch_norm_elemt :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
bias:unit Ctypes.ptr option ->
mean:unit Ctypes.ptr ->
invstd:unit Ctypes.ptr ->
eps:float ->
C.TensorG.t
val batch_norm_elemt_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
bias:unit Ctypes.ptr option ->
mean:unit Ctypes.ptr ->
invstd:unit Ctypes.ptr ->
eps:float ->
C.TensorG.t
val batch_norm_gather_stats :
unit Ctypes.ptr ->
mean:unit Ctypes.ptr ->
invstd:unit Ctypes.ptr ->
running_mean:unit Ctypes.ptr option ->
running_var:unit Ctypes.ptr option ->
momentum:float ->
eps:float ->
count:int ->
C.TensorG.t * C.TensorG.t
val batch_norm_gather_stats_with_counts :
unit Ctypes.ptr ->
mean:unit Ctypes.ptr ->
invstd:unit Ctypes.ptr ->
running_mean:unit Ctypes.ptr option ->
running_var:unit Ctypes.ptr option ->
momentum:float ->
eps:float ->
counts:unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val batch_norm_stats :
unit Ctypes.ptr ->
eps:float ->
C.TensorG.t * C.TensorG.t
val batch_norm_update_stats :
unit Ctypes.ptr ->
running_mean:unit Ctypes.ptr option ->
running_var:unit Ctypes.ptr option ->
momentum:float ->
C.TensorG.t * C.TensorG.t
val bernoulli : unit Ctypes.ptr -> C.TensorG.t
val bernoulli_ : unit Ctypes.ptr -> p:unit Ctypes.ptr -> C.TensorG.t
val bernoulli_float_ : unit Ctypes.ptr -> p:float -> C.TensorG.t
val bernoulli_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bernoulli_p : unit Ctypes.ptr -> p:float -> C.TensorG.t
val bilinear :
input1:unit Ctypes.ptr ->
input2:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
C.TensorG.t
val binary_cross_entropy :
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
reduction:Reduction.t ->
C.TensorG.t
val binary_cross_entropy_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
reduction:Reduction.t ->
C.TensorG.t
val binary_cross_entropy_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
reduction:Reduction.t ->
C.TensorG.t
val binary_cross_entropy_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
reduction:Reduction.t ->
C.TensorG.t
val binary_cross_entropy_with_logits :
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
pos_weight:unit Ctypes.ptr option ->
reduction:Reduction.t ->
C.TensorG.t
val binary_cross_entropy_with_logits_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
pos_weight:unit Ctypes.ptr option ->
reduction:Reduction.t ->
C.TensorG.t
val bincount :
unit Ctypes.ptr ->
weights:unit Ctypes.ptr option ->
minlength:int ->
C.TensorG.t
val binomial : count:unit Ctypes.ptr -> prob:unit Ctypes.ptr -> C.TensorG.t
val bitwise_and : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_and_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_and_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_and_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_and_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_and_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_left_shift : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_left_shift_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_left_shift_scalar_tensor :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_left_shift_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_left_shift_tensor_scalar :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_left_shift_tensor_scalar_ :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_left_shift_tensor_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_not : unit Ctypes.ptr -> C.TensorG.t
val bitwise_not_ : unit Ctypes.ptr -> C.TensorG.t
val bitwise_not_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_or : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_or_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_or_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_or_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_or_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_or_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_right_shift : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_right_shift_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_right_shift_scalar_tensor :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_right_shift_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_right_shift_tensor_scalar :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_right_shift_tensor_scalar_ :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_right_shift_tensor_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_xor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_xor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_xor_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val bitwise_xor_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_xor_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val bitwise_xor_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val blackman_window :
window_length:int ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val blackman_window_periodic :
window_length:int ->
periodic:bool ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val block_diag : C.TensorG.t list -> C.TensorG.t
val bmm : unit Ctypes.ptr -> mat2:unit Ctypes.ptr -> C.TensorG.t
val bmm_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
mat2:unit Ctypes.ptr ->
C.TensorG.t
val broadcast_tensors : C.TensorG.t list -> unit Ctypes.ptr list
val broadcast_to : unit Ctypes.ptr -> size:int list -> C.TensorG.t
val bucketize :
unit Ctypes.ptr ->
boundaries:unit Ctypes.ptr ->
out_int32:bool ->
right:bool ->
C.TensorG.t
val bucketize_scalar :
unit Ctypes.ptr ->
boundaries:unit Ctypes.ptr ->
out_int32:bool ->
right:bool ->
C.TensorG.t
val bucketize_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
boundaries:unit Ctypes.ptr ->
out_int32:bool ->
right:bool ->
C.TensorG.t
val cartesian_prod : C.TensorG.t list -> C.TensorG.t
val cat : C.TensorG.t list -> dim:int -> C.TensorG.t
val cat_out : out:unit Ctypes.ptr -> C.TensorG.t list -> dim:int -> C.TensorG.t
val cauchy_ : unit Ctypes.ptr -> median:float -> sigma:float -> C.TensorG.t
val cdist :
x1:unit Ctypes.ptr ->
x2:unit Ctypes.ptr ->
p:float ->
compute_mode:int ->
C.TensorG.t
val ceil : unit Ctypes.ptr -> C.TensorG.t
val ceil_ : unit Ctypes.ptr -> C.TensorG.t
val ceil_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val celu : unit Ctypes.ptr -> C.TensorG.t
val celu_ : unit Ctypes.ptr -> C.TensorG.t
val chain_matmul : matrices:C.TensorG.t list -> C.TensorG.t
val chain_matmul_out :
out:unit Ctypes.ptr ->
matrices:C.TensorG.t list ->
C.TensorG.t
val channel_shuffle : unit Ctypes.ptr -> groups:int -> C.TensorG.t
val cholesky : unit Ctypes.ptr -> upper:bool -> C.TensorG.t
val cholesky_inverse : unit Ctypes.ptr -> upper:bool -> C.TensorG.t
val cholesky_inverse_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
upper:bool ->
C.TensorG.t
val cholesky_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
upper:bool ->
C.TensorG.t
val cholesky_solve :
unit Ctypes.ptr ->
input2:unit Ctypes.ptr ->
upper:bool ->
C.TensorG.t
val cholesky_solve_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
input2:unit Ctypes.ptr ->
upper:bool ->
C.TensorG.t
val choose_qparams_optimized :
unit Ctypes.ptr ->
numel:int ->
n_bins:int ->
ratio:float ->
bit_width:int ->
C.TensorG.t * C.TensorG.t
val chunk : unit Ctypes.ptr -> chunks:int -> dim:int -> unit Ctypes.ptr list
val clamp :
unit Ctypes.ptr ->
min:unit Ctypes.ptr ->
max:unit Ctypes.ptr ->
C.TensorG.t
val clamp_ :
unit Ctypes.ptr ->
min:unit Ctypes.ptr ->
max:unit Ctypes.ptr ->
C.TensorG.t
val clamp_max : unit Ctypes.ptr -> max:unit Ctypes.ptr -> C.TensorG.t
val clamp_max_ : unit Ctypes.ptr -> max:unit Ctypes.ptr -> C.TensorG.t
val clamp_max_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
max:unit Ctypes.ptr ->
C.TensorG.t
val clamp_max_tensor : unit Ctypes.ptr -> max:unit Ctypes.ptr -> C.TensorG.t
val clamp_max_tensor_ : unit Ctypes.ptr -> max:unit Ctypes.ptr -> C.TensorG.t
val clamp_max_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
max:unit Ctypes.ptr ->
C.TensorG.t
val clamp_min : unit Ctypes.ptr -> min:unit Ctypes.ptr -> C.TensorG.t
val clamp_min_ : unit Ctypes.ptr -> min:unit Ctypes.ptr -> C.TensorG.t
val clamp_min_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
min:unit Ctypes.ptr ->
C.TensorG.t
val clamp_min_tensor : unit Ctypes.ptr -> min:unit Ctypes.ptr -> C.TensorG.t
val clamp_min_tensor_ : unit Ctypes.ptr -> min:unit Ctypes.ptr -> C.TensorG.t
val clamp_min_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
min:unit Ctypes.ptr ->
C.TensorG.t
val clamp_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
min:unit Ctypes.ptr ->
max:unit Ctypes.ptr ->
C.TensorG.t
val clamp_tensor :
unit Ctypes.ptr ->
min:unit Ctypes.ptr option ->
max:unit Ctypes.ptr option ->
C.TensorG.t
val clamp_tensor_ :
unit Ctypes.ptr ->
min:unit Ctypes.ptr option ->
max:unit Ctypes.ptr option ->
C.TensorG.t
val clamp_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
min:unit Ctypes.ptr option ->
max:unit Ctypes.ptr option ->
C.TensorG.t
val clip :
unit Ctypes.ptr ->
min:unit Ctypes.ptr ->
max:unit Ctypes.ptr ->
C.TensorG.t
val clip_ :
unit Ctypes.ptr ->
min:unit Ctypes.ptr ->
max:unit Ctypes.ptr ->
C.TensorG.t
val clip_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
min:unit Ctypes.ptr ->
max:unit Ctypes.ptr ->
C.TensorG.t
val clip_tensor :
unit Ctypes.ptr ->
min:unit Ctypes.ptr option ->
max:unit Ctypes.ptr option ->
C.TensorG.t
val clip_tensor_ :
unit Ctypes.ptr ->
min:unit Ctypes.ptr option ->
max:unit Ctypes.ptr option ->
C.TensorG.t
val clip_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
min:unit Ctypes.ptr option ->
max:unit Ctypes.ptr option ->
C.TensorG.t
val clone : unit Ctypes.ptr -> C.TensorG.t
val coalesce : unit Ctypes.ptr -> C.TensorG.t
val col2im :
unit Ctypes.ptr ->
output_size:int list ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
C.TensorG.t
val col2im_backward :
grad_output:unit Ctypes.ptr ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
C.TensorG.t
val col2im_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
C.TensorG.t
val col2im_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
output_size:int list ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
C.TensorG.t
val col_indices : unit Ctypes.ptr -> C.TensorG.t
val column_stack : C.TensorG.t list -> C.TensorG.t
val column_stack_out : out:unit Ctypes.ptr -> C.TensorG.t list -> C.TensorG.t
val combinations :
unit Ctypes.ptr ->
r:int ->
with_replacement:bool ->
C.TensorG.t
val complex : real:unit Ctypes.ptr -> imag:unit Ctypes.ptr -> C.TensorG.t
val complex_out :
out:unit Ctypes.ptr ->
real:unit Ctypes.ptr ->
imag:unit Ctypes.ptr ->
C.TensorG.t
val concat : C.TensorG.t list -> dim:int -> C.TensorG.t
val concat_out :
out:unit Ctypes.ptr ->
C.TensorG.t list ->
dim:int ->
C.TensorG.t
val conj : unit Ctypes.ptr -> C.TensorG.t
val conj_physical : unit Ctypes.ptr -> C.TensorG.t
val conj_physical_ : unit Ctypes.ptr -> C.TensorG.t
val conj_physical_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val constant_pad_nd : unit Ctypes.ptr -> pad:int list -> C.TensorG.t
val contiguous : unit Ctypes.ptr -> C.TensorG.t
val conv1d :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
groups:int ->
C.TensorG.t
val conv1d_padding :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:string ->
dilation:int list ->
groups:int ->
C.TensorG.t
val conv2d :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
groups:int ->
C.TensorG.t
val conv2d_padding :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:string ->
dilation:int list ->
groups:int ->
C.TensorG.t
val conv3d :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
groups:int ->
C.TensorG.t
val conv3d_padding :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:string ->
dilation:int list ->
groups:int ->
C.TensorG.t
val conv_depthwise3d :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
kernel_size:int list ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
C.TensorG.t
val conv_depthwise3d_backward :
grad_input:unit Ctypes.ptr ->
grad_weight:unit Ctypes.ptr ->
grad_bias:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val conv_tbc :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr ->
pad:int ->
C.TensorG.t
val conv_tbc_backward :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr ->
pad:int ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val conv_transpose1d :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
output_padding:int list ->
groups:int ->
dilation:int list ->
C.TensorG.t
val conv_transpose2d :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
output_padding:int list ->
groups:int ->
dilation:int list ->
C.TensorG.t
val conv_transpose3d :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
output_padding:int list ->
groups:int ->
dilation:int list ->
C.TensorG.t
val convolution :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
transposed:bool ->
output_padding:int list ->
groups:int ->
C.TensorG.t
val convolution_overrideable :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
transposed:bool ->
output_padding:int list ->
groups:int ->
C.TensorG.t
val copy_sparse_to_sparse_ :
unit Ctypes.ptr ->
src:unit Ctypes.ptr ->
non_blocking:bool ->
C.TensorG.t
val copysign : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val copysign_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val copysign_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val copysign_scalar : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val copysign_scalar_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val copysign_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val corrcoef : unit Ctypes.ptr -> C.TensorG.t
val cos : unit Ctypes.ptr -> C.TensorG.t
val cos_ : unit Ctypes.ptr -> C.TensorG.t
val cos_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val cosh : unit Ctypes.ptr -> C.TensorG.t
val cosh_ : unit Ctypes.ptr -> C.TensorG.t
val cosh_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val cosine_embedding_loss :
input1:unit Ctypes.ptr ->
input2:unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
margin:float ->
reduction:Reduction.t ->
C.TensorG.t
val cosine_similarity :
x1:unit Ctypes.ptr ->
x2:unit Ctypes.ptr ->
dim:int ->
eps:float ->
C.TensorG.t
val cov :
unit Ctypes.ptr ->
correction:int ->
fweights:unit Ctypes.ptr option ->
aweights:unit Ctypes.ptr option ->
C.TensorG.t
val cross : unit Ctypes.ptr -> unit Ctypes.ptr -> dim:int -> C.TensorG.t
val cross_entropy_loss :
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
reduction:Reduction.t ->
ignore_index:int ->
label_smoothing:float ->
C.TensorG.t
val cross_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
C.TensorG.t
val crow_indices : unit Ctypes.ptr -> C.TensorG.t
val ctc_loss :
log_probs:unit Ctypes.ptr ->
targets:unit Ctypes.ptr ->
input_lengths:int list ->
target_lengths:int list ->
blank:int ->
reduction:Reduction.t ->
zero_infinity:bool ->
C.TensorG.t
val ctc_loss_tensor :
log_probs:unit Ctypes.ptr ->
targets:unit Ctypes.ptr ->
input_lengths:unit Ctypes.ptr ->
target_lengths:unit Ctypes.ptr ->
blank:int ->
reduction:Reduction.t ->
zero_infinity:bool ->
C.TensorG.t
val cudnn_affine_grid_generator :
theta:unit Ctypes.ptr ->
n:int ->
c:int ->
h:int ->
w:int ->
C.TensorG.t
val cudnn_affine_grid_generator_backward :
grad:unit Ctypes.ptr ->
n:int ->
c:int ->
h:int ->
w:int ->
C.TensorG.t
val cudnn_batch_norm :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
running_mean:unit Ctypes.ptr option ->
running_var:unit Ctypes.ptr option ->
training:bool ->
exponential_average_factor:float ->
epsilon:float ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val cudnn_batch_norm_backward :
unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
running_mean:unit Ctypes.ptr option ->
running_var:unit Ctypes.ptr option ->
save_mean:unit Ctypes.ptr option ->
save_var:unit Ctypes.ptr option ->
epsilon:float ->
reservespace:unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val cudnn_convolution :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
allow_tf32:bool ->
C.TensorG.t
val cudnn_convolution_add_relu :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
z:unit Ctypes.ptr ->
alpha:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
groups:int ->
C.TensorG.t
val cudnn_convolution_backward_input :
self_size:int list ->
grad_output:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
allow_tf32:bool ->
C.TensorG.t
val cudnn_convolution_backward_weight :
weight_size:int list ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
allow_tf32:bool ->
C.TensorG.t
val cudnn_convolution_deprecated :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val cudnn_convolution_deprecated2 :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val cudnn_convolution_relu :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
stride:int list ->
padding:int list ->
dilation:int list ->
groups:int ->
C.TensorG.t
val cudnn_convolution_transpose :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
padding:int list ->
output_padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
allow_tf32:bool ->
C.TensorG.t
val cudnn_convolution_transpose_backward_input :
grad_output:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
allow_tf32:bool ->
C.TensorG.t
val cudnn_convolution_transpose_backward_weight :
weight_size:int list ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
allow_tf32:bool ->
C.TensorG.t
val cudnn_convolution_transpose_deprecated :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
padding:int list ->
output_padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val cudnn_convolution_transpose_deprecated2 :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
padding:int list ->
output_padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val cudnn_grid_sampler : unit Ctypes.ptr -> grid:unit Ctypes.ptr -> C.TensorG.t
val cudnn_grid_sampler_backward :
unit Ctypes.ptr ->
grid:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val cummax : unit Ctypes.ptr -> dim:int -> C.TensorG.t * C.TensorG.t
val cummax_out :
values:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
C.TensorG.t * C.TensorG.t
val cummaxmin_backward :
grad:unit Ctypes.ptr ->
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
dim:int ->
C.TensorG.t
val cummin : unit Ctypes.ptr -> dim:int -> C.TensorG.t * C.TensorG.t
val cummin_out :
values:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
C.TensorG.t * C.TensorG.t
val cumprod : unit Ctypes.ptr -> dim:int -> dtype:Kind.packed -> C.TensorG.t
val cumprod_ : unit Ctypes.ptr -> dim:int -> dtype:Kind.packed -> C.TensorG.t
val cumprod_backward :
grad:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
output:unit Ctypes.ptr ->
C.TensorG.t
val cumprod_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
dtype:Kind.packed ->
C.TensorG.t
val cumsum : unit Ctypes.ptr -> dim:int -> dtype:Kind.packed -> C.TensorG.t
val cumsum_ : unit Ctypes.ptr -> dim:int -> dtype:Kind.packed -> C.TensorG.t
val cumsum_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
dtype:Kind.packed ->
C.TensorG.t
val cumulative_trapezoid : y:unit Ctypes.ptr -> dim:int -> C.TensorG.t
val cumulative_trapezoid_x :
y:unit Ctypes.ptr ->
x:unit Ctypes.ptr ->
dim:int ->
C.TensorG.t
val data : unit Ctypes.ptr -> C.TensorG.t
val deg2rad : unit Ctypes.ptr -> C.TensorG.t
val deg2rad_ : unit Ctypes.ptr -> C.TensorG.t
val deg2rad_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val dequantize : unit Ctypes.ptr -> C.TensorG.t
val dequantize_tensors : C.TensorG.t list -> unit Ctypes.ptr list
val det : unit Ctypes.ptr -> C.TensorG.t
val detach : unit Ctypes.ptr -> C.TensorG.t
val detach_ : unit Ctypes.ptr -> C.TensorG.t
val diag : unit Ctypes.ptr -> diagonal:int -> C.TensorG.t
val diag_backward :
grad:unit Ctypes.ptr ->
input_sizes:int list ->
diagonal:int ->
C.TensorG.t
val diag_embed :
unit Ctypes.ptr ->
offset:int ->
dim1:int ->
dim2:int ->
C.TensorG.t
val diag_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
diagonal:int ->
C.TensorG.t
val diagflat : unit Ctypes.ptr -> offset:int -> C.TensorG.t
val diagonal :
unit Ctypes.ptr ->
offset:int ->
dim1:int ->
dim2:int ->
C.TensorG.t
val diagonal_backward :
grad_output:unit Ctypes.ptr ->
input_sizes:int list ->
offset:int ->
dim1:int ->
dim2:int ->
C.TensorG.t
val diff :
unit Ctypes.ptr ->
n:int ->
dim:int ->
prepend:unit Ctypes.ptr option ->
append:unit Ctypes.ptr option ->
C.TensorG.t
val diff_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
n:int ->
dim:int ->
prepend:unit Ctypes.ptr option ->
append:unit Ctypes.ptr option ->
C.TensorG.t
val digamma : unit Ctypes.ptr -> C.TensorG.t
val digamma_ : unit Ctypes.ptr -> C.TensorG.t
val digamma_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val dist : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val div : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val div_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val div_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val div_out_mode :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
rounding_mode:string ->
C.TensorG.t
val div_scalar : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val div_scalar_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val div_scalar_mode :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
rounding_mode:string ->
C.TensorG.t
val div_scalar_mode_ :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
rounding_mode:string ->
C.TensorG.t
val div_tensor_mode :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
rounding_mode:string ->
C.TensorG.t
val div_tensor_mode_ :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
rounding_mode:string ->
C.TensorG.t
val divide : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val divide_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val divide_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val divide_out_mode :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
rounding_mode:string ->
C.TensorG.t
val divide_scalar : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val divide_scalar_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val divide_scalar_mode :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
rounding_mode:string ->
C.TensorG.t
val divide_scalar_mode_ :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
rounding_mode:string ->
C.TensorG.t
val divide_tensor_mode :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
rounding_mode:string ->
C.TensorG.t
val divide_tensor_mode_ :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
rounding_mode:string ->
C.TensorG.t
val dot : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val dot_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val dropout : unit Ctypes.ptr -> p:float -> train:bool -> C.TensorG.t
val dropout_ : unit Ctypes.ptr -> p:float -> train:bool -> C.TensorG.t
val dsplit : unit Ctypes.ptr -> sections:int -> unit Ctypes.ptr list
val dsplit_array : unit Ctypes.ptr -> indices:int list -> unit Ctypes.ptr list
val dstack : C.TensorG.t list -> C.TensorG.t
val dstack_out : out:unit Ctypes.ptr -> C.TensorG.t list -> C.TensorG.t
val eig : unit Ctypes.ptr -> eigenvectors:bool -> C.TensorG.t * C.TensorG.t
val eig_e :
e:unit Ctypes.ptr ->
v:unit Ctypes.ptr ->
unit Ctypes.ptr ->
eigenvectors:bool ->
C.TensorG.t * C.TensorG.t
val einsum : equation:string -> C.TensorG.t list -> C.TensorG.t
val elu : unit Ctypes.ptr -> C.TensorG.t
val elu_ : unit Ctypes.ptr -> C.TensorG.t
val elu_backward :
grad_output:unit Ctypes.ptr ->
alpha:unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
input_scale:unit Ctypes.ptr ->
is_result:bool ->
self_or_result:unit Ctypes.ptr ->
C.TensorG.t
val elu_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
alpha:unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
input_scale:unit Ctypes.ptr ->
is_result:bool ->
self_or_result:unit Ctypes.ptr ->
C.TensorG.t
val elu_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val embedding :
weight:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
padding_idx:int ->
scale_grad_by_freq:bool ->
sparse:bool ->
C.TensorG.t
val embedding_backward :
grad:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
num_weights:int ->
padding_idx:int ->
scale_grad_by_freq:bool ->
sparse:bool ->
C.TensorG.t
val embedding_bag :
weight:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
offsets:unit Ctypes.ptr ->
scale_grad_by_freq:bool ->
mode:int ->
sparse:bool ->
per_sample_weights:unit Ctypes.ptr option ->
include_last_offset:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val embedding_bag_padding_idx :
weight:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
offsets:unit Ctypes.ptr ->
scale_grad_by_freq:bool ->
mode:int ->
sparse:bool ->
per_sample_weights:unit Ctypes.ptr option ->
include_last_offset:bool ->
padding_idx:int ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val embedding_dense_backward :
grad_output:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
num_weights:int ->
padding_idx:int ->
scale_grad_by_freq:bool ->
C.TensorG.t
val embedding_renorm_ :
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
max_norm:float ->
norm_type:float ->
C.TensorG.t
val embedding_sparse_backward :
grad:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
num_weights:int ->
padding_idx:int ->
scale_grad_by_freq:bool ->
C.TensorG.t
val empty : size:int list -> options:(Kind.packed * Device.t) -> C.TensorG.t
val empty_like : unit Ctypes.ptr -> C.TensorG.t
val empty_out : out:unit Ctypes.ptr -> size:int list -> C.TensorG.t
val empty_quantized :
size:int list ->
qtensor:unit Ctypes.ptr ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val empty_strided :
size:int list ->
stride:int list ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val eq : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val eq_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val eq_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val eq_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val eq_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val eq_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val erf : unit Ctypes.ptr -> C.TensorG.t
val erf_ : unit Ctypes.ptr -> C.TensorG.t
val erf_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val erfc : unit Ctypes.ptr -> C.TensorG.t
val erfc_ : unit Ctypes.ptr -> C.TensorG.t
val erfc_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val erfinv : unit Ctypes.ptr -> C.TensorG.t
val erfinv_ : unit Ctypes.ptr -> C.TensorG.t
val erfinv_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val exp : unit Ctypes.ptr -> C.TensorG.t
val exp2 : unit Ctypes.ptr -> C.TensorG.t
val exp2_ : unit Ctypes.ptr -> C.TensorG.t
val exp2_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val exp_ : unit Ctypes.ptr -> C.TensorG.t
val exp_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val expand : unit Ctypes.ptr -> size:int list -> implicit:bool -> C.TensorG.t
val expand_as : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val expm1 : unit Ctypes.ptr -> C.TensorG.t
val expm1_ : unit Ctypes.ptr -> C.TensorG.t
val expm1_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val exponential_ : unit Ctypes.ptr -> lambd:float -> C.TensorG.t
val eye : n:int -> options:(Kind.packed * Device.t) -> C.TensorG.t
val eye_m : n:int -> m:int -> options:(Kind.packed * Device.t) -> C.TensorG.t
val eye_m_out : out:unit Ctypes.ptr -> n:int -> m:int -> C.TensorG.t
val eye_out : out:unit Ctypes.ptr -> n:int -> C.TensorG.t
val fake_quantize_per_channel_affine :
unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
zero_point:unit Ctypes.ptr ->
axis:int ->
quant_min:int ->
quant_max:int ->
C.TensorG.t
val fake_quantize_per_channel_affine_cachemask :
unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
zero_point:unit Ctypes.ptr ->
axis:int ->
quant_min:int ->
quant_max:int ->
C.TensorG.t * C.TensorG.t
val fake_quantize_per_channel_affine_cachemask_backward :
grad:unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
C.TensorG.t
val fake_quantize_per_tensor_affine :
unit Ctypes.ptr ->
scale:float ->
zero_point:int ->
quant_min:int ->
quant_max:int ->
C.TensorG.t
val fake_quantize_per_tensor_affine_cachemask :
unit Ctypes.ptr ->
scale:float ->
zero_point:int ->
quant_min:int ->
quant_max:int ->
C.TensorG.t * C.TensorG.t
val fake_quantize_per_tensor_affine_cachemask_backward :
grad:unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
C.TensorG.t
val fake_quantize_per_tensor_affine_tensor_qparams :
unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
zero_point:unit Ctypes.ptr ->
quant_min:int ->
quant_max:int ->
C.TensorG.t
val fbgemm_linear_fp16_weight :
unit Ctypes.ptr ->
packed_weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr ->
C.TensorG.t
val fbgemm_linear_fp16_weight_fp32_activation :
unit Ctypes.ptr ->
packed_weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr ->
C.TensorG.t
val fbgemm_linear_int8_weight :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
packed:unit Ctypes.ptr ->
col_offsets:unit Ctypes.ptr ->
weight_scale:unit Ctypes.ptr ->
weight_zero_point:unit Ctypes.ptr ->
bias:unit Ctypes.ptr ->
C.TensorG.t
val fbgemm_linear_int8_weight_fp32_activation :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
packed:unit Ctypes.ptr ->
col_offsets:unit Ctypes.ptr ->
weight_scale:unit Ctypes.ptr ->
weight_zero_point:unit Ctypes.ptr ->
bias:unit Ctypes.ptr ->
C.TensorG.t
val fbgemm_pack_gemm_matrix_fp16 : unit Ctypes.ptr -> C.TensorG.t
val fbgemm_pack_quantized_matrix : unit Ctypes.ptr -> C.TensorG.t
val fbgemm_pack_quantized_matrix_kn :
unit Ctypes.ptr ->
k:int ->
n:int ->
C.TensorG.t
val feature_alpha_dropout :
unit Ctypes.ptr ->
p:float ->
train:bool ->
C.TensorG.t
val feature_alpha_dropout_ :
unit Ctypes.ptr ->
p:float ->
train:bool ->
C.TensorG.t
val feature_dropout : unit Ctypes.ptr -> p:float -> train:bool -> C.TensorG.t
val feature_dropout_ : unit Ctypes.ptr -> p:float -> train:bool -> C.TensorG.t
val fft_fft : unit Ctypes.ptr -> n:int -> dim:int -> norm:string -> C.TensorG.t
val fft_fft2 :
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_fft2_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_fft_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
n:int ->
dim:int ->
norm:string ->
C.TensorG.t
val fft_fftfreq :
n:int ->
d:float ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val fft_fftfreq_out : out:unit Ctypes.ptr -> n:int -> d:float -> C.TensorG.t
val fft_fftn :
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_fftn_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_fftshift : unit Ctypes.ptr -> dim:int list -> C.TensorG.t
val fft_hfft :
unit Ctypes.ptr ->
n:int ->
dim:int ->
norm:string ->
C.TensorG.t
val fft_hfft_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
n:int ->
dim:int ->
norm:string ->
C.TensorG.t
val fft_ifft :
unit Ctypes.ptr ->
n:int ->
dim:int ->
norm:string ->
C.TensorG.t
val fft_ifft2 :
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_ifft2_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_ifft_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
n:int ->
dim:int ->
norm:string ->
C.TensorG.t
val fft_ifftn :
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_ifftn_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_ifftshift : unit Ctypes.ptr -> dim:int list -> C.TensorG.t
val fft_ihfft :
unit Ctypes.ptr ->
n:int ->
dim:int ->
norm:string ->
C.TensorG.t
val fft_ihfft_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
n:int ->
dim:int ->
norm:string ->
C.TensorG.t
val fft_irfft :
unit Ctypes.ptr ->
n:int ->
dim:int ->
norm:string ->
C.TensorG.t
val fft_irfft2 :
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_irfft2_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_irfft_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
n:int ->
dim:int ->
norm:string ->
C.TensorG.t
val fft_irfftn :
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_irfftn_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_rfft :
unit Ctypes.ptr ->
n:int ->
dim:int ->
norm:string ->
C.TensorG.t
val fft_rfft2 :
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_rfft2_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_rfft_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
n:int ->
dim:int ->
norm:string ->
C.TensorG.t
val fft_rfftfreq :
n:int ->
d:float ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val fft_rfftfreq_out : out:unit Ctypes.ptr -> n:int -> d:float -> C.TensorG.t
val fft_rfftn :
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fft_rfftn_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
s:int list ->
dim:int list ->
norm:string ->
C.TensorG.t
val fill_ : unit Ctypes.ptr -> value:unit Ctypes.ptr -> C.TensorG.t
val fill_diagonal_ :
unit Ctypes.ptr ->
fill_value:unit Ctypes.ptr ->
wrap:bool ->
C.TensorG.t
val fill_tensor_ : unit Ctypes.ptr -> value:unit Ctypes.ptr -> C.TensorG.t
val fix : unit Ctypes.ptr -> C.TensorG.t
val fix_ : unit Ctypes.ptr -> C.TensorG.t
val fix_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val flatten : unit Ctypes.ptr -> start_dim:int -> end_dim:int -> C.TensorG.t
val flatten_dense_tensors : C.TensorG.t list -> C.TensorG.t
val flip : unit Ctypes.ptr -> dims:int list -> C.TensorG.t
val fliplr : unit Ctypes.ptr -> C.TensorG.t
val flipud : unit Ctypes.ptr -> C.TensorG.t
val float_power : unit Ctypes.ptr -> exponent:unit Ctypes.ptr -> C.TensorG.t
val float_power_ : unit Ctypes.ptr -> exponent:unit Ctypes.ptr -> C.TensorG.t
val float_power_scalar :
unit Ctypes.ptr ->
exponent:unit Ctypes.ptr ->
C.TensorG.t
val float_power_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
exponent:unit Ctypes.ptr ->
C.TensorG.t
val float_power_tensor_ :
unit Ctypes.ptr ->
exponent:unit Ctypes.ptr ->
C.TensorG.t
val float_power_tensor_scalar :
unit Ctypes.ptr ->
exponent:unit Ctypes.ptr ->
C.TensorG.t
val float_power_tensor_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
exponent:unit Ctypes.ptr ->
C.TensorG.t
val float_power_tensor_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
exponent:unit Ctypes.ptr ->
C.TensorG.t
val floor : unit Ctypes.ptr -> C.TensorG.t
val floor_ : unit Ctypes.ptr -> C.TensorG.t
val floor_divide : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val floor_divide_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val floor_divide_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val floor_divide_scalar : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val floor_divide_scalar_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val floor_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val fmax : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val fmax_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val fmin : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val fmin_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val fmod : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val fmod_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val fmod_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val fmod_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val fmod_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val fmod_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val frac : unit Ctypes.ptr -> C.TensorG.t
val frac_ : unit Ctypes.ptr -> C.TensorG.t
val frac_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val fractional_max_pool2d :
unit Ctypes.ptr ->
kernel_size:int list ->
output_size:int list ->
random_samples:unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val fractional_max_pool2d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
output_size:int list ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val fractional_max_pool2d_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
output_size:int list ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val fractional_max_pool2d_output :
output:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
output_size:int list ->
random_samples:unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val fractional_max_pool3d :
unit Ctypes.ptr ->
kernel_size:int list ->
output_size:int list ->
random_samples:unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val fractional_max_pool3d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
output_size:int list ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val fractional_max_pool3d_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
output_size:int list ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val fractional_max_pool3d_output :
output:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
output_size:int list ->
random_samples:unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val frexp : unit Ctypes.ptr -> C.TensorG.t * C.TensorG.t
val frexp_tensor_out :
mantissa:unit Ctypes.ptr ->
exponent:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val frobenius_norm : unit Ctypes.ptr -> C.TensorG.t
val frobenius_norm_dim :
unit Ctypes.ptr ->
dim:int list ->
keepdim:bool ->
C.TensorG.t
val frobenius_norm_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int list ->
keepdim:bool ->
C.TensorG.t
val from_file :
filename:string ->
shared:bool ->
size:int ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val full :
size:int list ->
fill_value:unit Ctypes.ptr ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val full_like : unit Ctypes.ptr -> fill_value:unit Ctypes.ptr -> C.TensorG.t
val full_out :
out:unit Ctypes.ptr ->
size:int list ->
fill_value:unit Ctypes.ptr ->
C.TensorG.t
val fused_moving_avg_obs_fake_quant :
unit Ctypes.ptr ->
observer_on:unit Ctypes.ptr ->
fake_quant_on:unit Ctypes.ptr ->
running_min:unit Ctypes.ptr ->
running_max:unit Ctypes.ptr ->
scale:unit Ctypes.ptr ->
zero_point:unit Ctypes.ptr ->
averaging_const:float ->
quant_min:int ->
quant_max:int ->
ch_axis:int ->
per_row_fake_quant:bool ->
symmetric_quant:bool ->
C.TensorG.t
val gather :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
sparse_grad:bool ->
C.TensorG.t
val gather_backward :
grad:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
sparse_grad:bool ->
C.TensorG.t
val gather_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
sparse_grad:bool ->
C.TensorG.t
val gcd : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val gcd_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val gcd_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val ge : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val ge_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val ge_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val ge_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val ge_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val ge_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val gelu : unit Ctypes.ptr -> C.TensorG.t
val gelu_backward : grad:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val gelu_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val gelu_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val geometric_ : unit Ctypes.ptr -> p:float -> C.TensorG.t
val geqrf : unit Ctypes.ptr -> C.TensorG.t * C.TensorG.t
val geqrf_a :
a:unit Ctypes.ptr ->
tau:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val ger : unit Ctypes.ptr -> vec2:unit Ctypes.ptr -> C.TensorG.t
val ger_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
vec2:unit Ctypes.ptr ->
C.TensorG.t
val glu : unit Ctypes.ptr -> dim:int -> C.TensorG.t
val glu_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
C.TensorG.t
val glu_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
C.TensorG.t
val glu_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> dim:int -> C.TensorG.t
val grad : unit Ctypes.ptr -> C.TensorG.t
val greater : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val greater_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val greater_equal : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val greater_equal_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val greater_equal_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val greater_equal_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val greater_equal_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val greater_equal_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val greater_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val greater_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val greater_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val greater_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val grid_sampler :
unit Ctypes.ptr ->
grid:unit Ctypes.ptr ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
C.TensorG.t
val grid_sampler_2d :
unit Ctypes.ptr ->
grid:unit Ctypes.ptr ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
C.TensorG.t
val grid_sampler_2d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
grid:unit Ctypes.ptr ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
C.TensorG.t * C.TensorG.t
val grid_sampler_3d :
unit Ctypes.ptr ->
grid:unit Ctypes.ptr ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
C.TensorG.t
val grid_sampler_3d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
grid:unit Ctypes.ptr ->
interpolation_mode:int ->
padding_mode:int ->
align_corners:bool ->
C.TensorG.t * C.TensorG.t
val group_norm :
unit Ctypes.ptr ->
num_groups:int ->
weight:unit Ctypes.ptr option ->
bias:unit Ctypes.ptr option ->
eps:float ->
cudnn_enabled:bool ->
C.TensorG.t
val gru :
unit Ctypes.ptr ->
hx:unit Ctypes.ptr ->
params:C.TensorG.t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
batch_first:bool ->
C.TensorG.t * C.TensorG.t
val gru_cell :
unit Ctypes.ptr ->
hx:unit Ctypes.ptr ->
w_ih:unit Ctypes.ptr ->
w_hh:unit Ctypes.ptr ->
b_ih:unit Ctypes.ptr option ->
b_hh:unit Ctypes.ptr option ->
C.TensorG.t
val gru_data :
data:unit Ctypes.ptr ->
batch_sizes:unit Ctypes.ptr ->
hx:unit Ctypes.ptr ->
params:C.TensorG.t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
C.TensorG.t * C.TensorG.t
val gt : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val gt_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val gt_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val gt_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val gt_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val gt_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val hamming_window :
window_length:int ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val hamming_window_periodic :
window_length:int ->
periodic:bool ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val hamming_window_periodic_alpha :
window_length:int ->
periodic:bool ->
alpha:float ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val hamming_window_periodic_alpha_beta :
window_length:int ->
periodic:bool ->
alpha:float ->
beta:float ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val hann_window :
window_length:int ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val hann_window_periodic :
window_length:int ->
periodic:bool ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val hardshrink : unit Ctypes.ptr -> C.TensorG.t
val hardshrink_backward :
grad_out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
lambd:unit Ctypes.ptr ->
C.TensorG.t
val hardshrink_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
lambd:unit Ctypes.ptr ->
C.TensorG.t
val hardshrink_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val hardsigmoid : unit Ctypes.ptr -> C.TensorG.t
val hardsigmoid_ : unit Ctypes.ptr -> C.TensorG.t
val hardsigmoid_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val hardsigmoid_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val hardsigmoid_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val hardswish : unit Ctypes.ptr -> C.TensorG.t
val hardswish_ : unit Ctypes.ptr -> C.TensorG.t
val hardswish_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val hardswish_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val hardtanh : unit Ctypes.ptr -> C.TensorG.t
val hardtanh_ : unit Ctypes.ptr -> C.TensorG.t
val hardtanh_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
min_val:unit Ctypes.ptr ->
max_val:unit Ctypes.ptr ->
C.TensorG.t
val hardtanh_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
min_val:unit Ctypes.ptr ->
max_val:unit Ctypes.ptr ->
C.TensorG.t
val hardtanh_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val heaviside : unit Ctypes.ptr -> values:unit Ctypes.ptr -> C.TensorG.t
val heaviside_ : unit Ctypes.ptr -> values:unit Ctypes.ptr -> C.TensorG.t
val heaviside_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
values:unit Ctypes.ptr ->
C.TensorG.t
val hinge_embedding_loss :
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
margin:float ->
reduction:Reduction.t ->
C.TensorG.t
val histc : unit Ctypes.ptr -> bins:int -> C.TensorG.t
val histc_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
bins:int ->
C.TensorG.t
val hsplit : unit Ctypes.ptr -> sections:int -> unit Ctypes.ptr list
val hsplit_array : unit Ctypes.ptr -> indices:int list -> unit Ctypes.ptr list
val hspmm : mat1:unit Ctypes.ptr -> mat2:unit Ctypes.ptr -> C.TensorG.t
val hspmm_out :
out:unit Ctypes.ptr ->
mat1:unit Ctypes.ptr ->
mat2:unit Ctypes.ptr ->
C.TensorG.t
val hstack : C.TensorG.t list -> C.TensorG.t
val hstack_out : out:unit Ctypes.ptr -> C.TensorG.t list -> C.TensorG.t
val huber_loss :
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
delta:float ->
C.TensorG.t
val huber_loss_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
delta:float ->
C.TensorG.t
val huber_loss_backward_out :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
delta:float ->
C.TensorG.t
val huber_loss_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
delta:float ->
C.TensorG.t
val hypot : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val hypot_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val hypot_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val i0 : unit Ctypes.ptr -> C.TensorG.t
val i0_ : unit Ctypes.ptr -> C.TensorG.t
val i0_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val igamma : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val igamma_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val igamma_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val igammac : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val igammac_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val igammac_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val im2col :
unit Ctypes.ptr ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
C.TensorG.t
val im2col_backward :
grad_output:unit Ctypes.ptr ->
input_size:int list ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
C.TensorG.t
val im2col_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
input_size:int list ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
C.TensorG.t
val im2col_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
dilation:int list ->
padding:int list ->
stride:int list ->
C.TensorG.t
val imag : unit Ctypes.ptr -> C.TensorG.t
val index :
unit Ctypes.ptr ->
indices:unit Ctypes.ptr option list ->
C.TensorG.t
val index_add :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
source:unit Ctypes.ptr ->
C.TensorG.t
val index_add_ :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
source:unit Ctypes.ptr ->
C.TensorG.t
val index_add_alpha :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
source:unit Ctypes.ptr ->
alpha:unit Ctypes.ptr ->
C.TensorG.t
val index_add_alpha_ :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
source:unit Ctypes.ptr ->
alpha:unit Ctypes.ptr ->
C.TensorG.t
val index_copy :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
source:unit Ctypes.ptr ->
C.TensorG.t
val index_copy_ :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
source:unit Ctypes.ptr ->
C.TensorG.t
val index_fill :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
value:unit Ctypes.ptr ->
C.TensorG.t
val index_fill_ :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
value:unit Ctypes.ptr ->
C.TensorG.t
val index_fill_int_tensor :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
value:unit Ctypes.ptr ->
C.TensorG.t
val index_fill_int_tensor_ :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
value:unit Ctypes.ptr ->
C.TensorG.t
val index_put :
unit Ctypes.ptr ->
indices:unit Ctypes.ptr option list ->
values:unit Ctypes.ptr ->
accumulate:bool ->
C.TensorG.t
val index_put_ :
unit Ctypes.ptr ->
indices:unit Ctypes.ptr option list ->
values:unit Ctypes.ptr ->
accumulate:bool ->
C.TensorG.t
val index_select :
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
C.TensorG.t
val index_select_backward :
grad:unit Ctypes.ptr ->
self_sizes:int list ->
dim:int ->
index:unit Ctypes.ptr ->
C.TensorG.t
val index_select_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
index:unit Ctypes.ptr ->
C.TensorG.t
val indices : unit Ctypes.ptr -> C.TensorG.t
val infinitely_differentiable_gelu_backward :
grad:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val inner : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val inner_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val instance_norm :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr option ->
bias:unit Ctypes.ptr option ->
running_mean:unit Ctypes.ptr option ->
running_var:unit Ctypes.ptr option ->
use_input_stats:bool ->
momentum:float ->
eps:float ->
cudnn_enabled:bool ->
C.TensorG.t
val int_repr : unit Ctypes.ptr -> C.TensorG.t
val inverse : unit Ctypes.ptr -> C.TensorG.t
val inverse_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val isclose :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
rtol:float ->
atol:float ->
equal_nan:bool ->
C.TensorG.t
val isfinite : unit Ctypes.ptr -> C.TensorG.t
val isin :
elements:unit Ctypes.ptr ->
test_elements:unit Ctypes.ptr ->
assume_unique:bool ->
invert:bool ->
C.TensorG.t
val isin_scalar_tensor :
element:unit Ctypes.ptr ->
test_elements:unit Ctypes.ptr ->
assume_unique:bool ->
invert:bool ->
C.TensorG.t
val isin_scalar_tensor_out :
out:unit Ctypes.ptr ->
element:unit Ctypes.ptr ->
test_elements:unit Ctypes.ptr ->
assume_unique:bool ->
invert:bool ->
C.TensorG.t
val isin_tensor_scalar :
elements:unit Ctypes.ptr ->
test_element:unit Ctypes.ptr ->
assume_unique:bool ->
invert:bool ->
C.TensorG.t
val isin_tensor_scalar_out :
out:unit Ctypes.ptr ->
elements:unit Ctypes.ptr ->
test_element:unit Ctypes.ptr ->
assume_unique:bool ->
invert:bool ->
C.TensorG.t
val isin_tensor_tensor_out :
out:unit Ctypes.ptr ->
elements:unit Ctypes.ptr ->
test_elements:unit Ctypes.ptr ->
assume_unique:bool ->
invert:bool ->
C.TensorG.t
val isinf : unit Ctypes.ptr -> C.TensorG.t
val isnan : unit Ctypes.ptr -> C.TensorG.t
val isneginf : unit Ctypes.ptr -> C.TensorG.t
val isneginf_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val isposinf : unit Ctypes.ptr -> C.TensorG.t
val isposinf_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val isreal : unit Ctypes.ptr -> C.TensorG.t
val istft :
unit Ctypes.ptr ->
n_fft:int ->
hop_length:int ->
win_length:int ->
window:unit Ctypes.ptr option ->
center:bool ->
normalized:bool ->
onesided:bool ->
length:int ->
return_complex:bool ->
C.TensorG.t
val kaiser_window :
window_length:int ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val kaiser_window_beta :
window_length:int ->
periodic:bool ->
beta:float ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val kaiser_window_periodic :
window_length:int ->
periodic:bool ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val kl_div :
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
log_target:bool ->
C.TensorG.t
val kl_div_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
log_target:bool ->
C.TensorG.t
val kron : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val kron_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val kthvalue :
unit Ctypes.ptr ->
k:int ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val kthvalue_values :
values:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
k:int ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val l1_loss :
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
C.TensorG.t
val l1_loss_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
C.TensorG.t
val l1_loss_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
C.TensorG.t
val l1_loss_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
C.TensorG.t
val layer_norm :
unit Ctypes.ptr ->
normalized_shape:int list ->
weight:unit Ctypes.ptr option ->
bias:unit Ctypes.ptr option ->
eps:float ->
cudnn_enable:bool ->
C.TensorG.t
val lcm : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val lcm_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val lcm_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val ldexp : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val ldexp_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val ldexp_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val le : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val le_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val le_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val le_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val le_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val le_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val leaky_relu : unit Ctypes.ptr -> C.TensorG.t
val leaky_relu_ : unit Ctypes.ptr -> C.TensorG.t
val leaky_relu_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
negative_slope:unit Ctypes.ptr ->
self_is_result:bool ->
C.TensorG.t
val leaky_relu_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
negative_slope:unit Ctypes.ptr ->
self_is_result:bool ->
C.TensorG.t
val leaky_relu_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val lerp :
unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
C.TensorG.t
val lerp_ :
unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
C.TensorG.t
val lerp_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
C.TensorG.t
val lerp_tensor :
unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
C.TensorG.t
val lerp_tensor_ :
unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
C.TensorG.t
val lerp_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
C.TensorG.t
val less : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val less_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val less_equal : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val less_equal_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val less_equal_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val less_equal_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val less_equal_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val less_equal_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val less_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val less_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val less_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val less_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val lgamma : unit Ctypes.ptr -> C.TensorG.t
val lgamma_ : unit Ctypes.ptr -> C.TensorG.t
val lgamma_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val linalg_cholesky : unit Ctypes.ptr -> upper:bool -> C.TensorG.t
val linalg_cholesky_ex :
unit Ctypes.ptr ->
upper:bool ->
check_errors:bool ->
C.TensorG.t * C.TensorG.t
val linalg_cholesky_ex_l :
l:unit Ctypes.ptr ->
info:unit Ctypes.ptr ->
unit Ctypes.ptr ->
upper:bool ->
check_errors:bool ->
C.TensorG.t * C.TensorG.t
val linalg_cholesky_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
upper:bool ->
C.TensorG.t
val linalg_cond : unit Ctypes.ptr -> p:unit Ctypes.ptr -> C.TensorG.t
val linalg_cond_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
p:unit Ctypes.ptr ->
C.TensorG.t
val linalg_cond_p_str : unit Ctypes.ptr -> p:string -> C.TensorG.t
val linalg_cond_p_str_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
p:string ->
C.TensorG.t
val linalg_det : unit Ctypes.ptr -> C.TensorG.t
val linalg_det_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val linalg_eig : unit Ctypes.ptr -> C.TensorG.t * C.TensorG.t
val linalg_eig_out :
eigenvalues:unit Ctypes.ptr ->
eigenvectors:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val linalg_eigh : unit Ctypes.ptr -> uplo:string -> C.TensorG.t * C.TensorG.t
val linalg_eigh_eigvals :
eigvals:unit Ctypes.ptr ->
eigvecs:unit Ctypes.ptr ->
unit Ctypes.ptr ->
uplo:string ->
C.TensorG.t * C.TensorG.t
val linalg_eigvals : unit Ctypes.ptr -> C.TensorG.t
val linalg_eigvals_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val linalg_eigvalsh : unit Ctypes.ptr -> uplo:string -> C.TensorG.t
val linalg_eigvalsh_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
uplo:string ->
C.TensorG.t
val linalg_householder_product :
unit Ctypes.ptr ->
tau:unit Ctypes.ptr ->
C.TensorG.t
val linalg_householder_product_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
tau:unit Ctypes.ptr ->
C.TensorG.t
val linalg_inv : unit Ctypes.ptr -> C.TensorG.t
val linalg_inv_ex :
unit Ctypes.ptr ->
check_errors:bool ->
C.TensorG.t * C.TensorG.t
val linalg_inv_ex_inverse :
inverse:unit Ctypes.ptr ->
info:unit Ctypes.ptr ->
unit Ctypes.ptr ->
check_errors:bool ->
C.TensorG.t * C.TensorG.t
val linalg_inv_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val linalg_lstsq :
unit Ctypes.ptr ->
b:unit Ctypes.ptr ->
rcond:float ->
driver:string ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val linalg_lstsq_out :
solution:unit Ctypes.ptr ->
residuals:unit Ctypes.ptr ->
rank:unit Ctypes.ptr ->
singular_values:unit Ctypes.ptr ->
unit Ctypes.ptr ->
b:unit Ctypes.ptr ->
rcond:float ->
driver:string ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val linalg_matmul : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val linalg_matmul_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val linalg_matrix_power : unit Ctypes.ptr -> n:int -> C.TensorG.t
val linalg_matrix_power_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
n:int ->
C.TensorG.t
val linalg_matrix_rank :
unit Ctypes.ptr ->
tol:float ->
hermitian:bool ->
C.TensorG.t
val linalg_matrix_rank_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
tol:float ->
hermitian:bool ->
C.TensorG.t
val linalg_matrix_rank_out_tol_tensor :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
tol:unit Ctypes.ptr ->
hermitian:bool ->
C.TensorG.t
val linalg_matrix_rank_tol_tensor :
unit Ctypes.ptr ->
tol:unit Ctypes.ptr ->
hermitian:bool ->
C.TensorG.t
val linalg_multi_dot : C.TensorG.t list -> C.TensorG.t
val linalg_multi_dot_out :
out:unit Ctypes.ptr ->
C.TensorG.t list ->
C.TensorG.t
val linalg_pinv :
unit Ctypes.ptr ->
rcond:float ->
hermitian:bool ->
C.TensorG.t
val linalg_pinv_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
rcond:float ->
hermitian:bool ->
C.TensorG.t
val linalg_pinv_out_rcond_tensor :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
rcond:unit Ctypes.ptr ->
hermitian:bool ->
C.TensorG.t
val linalg_pinv_rcond_tensor :
unit Ctypes.ptr ->
rcond:unit Ctypes.ptr ->
hermitian:bool ->
C.TensorG.t
val linalg_qr : unit Ctypes.ptr -> mode:string -> C.TensorG.t * C.TensorG.t
val linalg_qr_out :
q:unit Ctypes.ptr ->
r:unit Ctypes.ptr ->
unit Ctypes.ptr ->
mode:string ->
C.TensorG.t * C.TensorG.t
val linalg_slogdet : unit Ctypes.ptr -> C.TensorG.t * C.TensorG.t
val linalg_slogdet_out :
sign:unit Ctypes.ptr ->
logabsdet:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val linalg_solve : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val linalg_solve_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val linalg_svd :
unit Ctypes.ptr ->
full_matrices:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val linalg_svd_u :
u:unit Ctypes.ptr ->
s:unit Ctypes.ptr ->
vh:unit Ctypes.ptr ->
unit Ctypes.ptr ->
full_matrices:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val linalg_svdvals : unit Ctypes.ptr -> C.TensorG.t
val linalg_svdvals_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val linalg_tensorinv : unit Ctypes.ptr -> ind:int -> C.TensorG.t
val linalg_tensorinv_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
ind:int ->
C.TensorG.t
val linalg_tensorsolve :
unit Ctypes.ptr ->
unit Ctypes.ptr ->
dims:int list ->
C.TensorG.t
val linalg_tensorsolve_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
dims:int list ->
C.TensorG.t
val linear :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
C.TensorG.t
val linear_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
C.TensorG.t
val linspace :
start:unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
steps:int ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val linspace_out :
out:unit Ctypes.ptr ->
start:unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
steps:int ->
C.TensorG.t
val log : unit Ctypes.ptr -> C.TensorG.t
val log10 : unit Ctypes.ptr -> C.TensorG.t
val log10_ : unit Ctypes.ptr -> C.TensorG.t
val log10_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val log1p : unit Ctypes.ptr -> C.TensorG.t
val log1p_ : unit Ctypes.ptr -> C.TensorG.t
val log1p_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val log2 : unit Ctypes.ptr -> C.TensorG.t
val log2_ : unit Ctypes.ptr -> C.TensorG.t
val log2_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val log_ : unit Ctypes.ptr -> C.TensorG.t
val log_normal_ : unit Ctypes.ptr -> mean:float -> std:float -> C.TensorG.t
val log_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val log_sigmoid : unit Ctypes.ptr -> C.TensorG.t
val log_sigmoid_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
buffer:unit Ctypes.ptr ->
C.TensorG.t
val log_sigmoid_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
buffer:unit Ctypes.ptr ->
C.TensorG.t
val log_sigmoid_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val log_softmax :
unit Ctypes.ptr ->
dim:int ->
dtype:Kind.packed ->
C.TensorG.t
val logaddexp : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val logaddexp2 : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val logaddexp2_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val logaddexp_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val logcumsumexp : unit Ctypes.ptr -> dim:int -> C.TensorG.t
val logcumsumexp_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
C.TensorG.t
val logdet : unit Ctypes.ptr -> C.TensorG.t
val logical_and : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val logical_and_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val logical_and_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val logical_not : unit Ctypes.ptr -> C.TensorG.t
val logical_not_ : unit Ctypes.ptr -> C.TensorG.t
val logical_not_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val logical_or : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val logical_or_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val logical_or_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val logical_xor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val logical_xor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val logical_xor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val logit : unit Ctypes.ptr -> eps:float -> C.TensorG.t
val logit_ : unit Ctypes.ptr -> eps:float -> C.TensorG.t
val logit_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
eps:float ->
C.TensorG.t
val logit_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
eps:float ->
C.TensorG.t
val logit_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
eps:float ->
C.TensorG.t
val logspace :
start:unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
steps:int ->
base:float ->
options:(Kind.packed * Device.t) ->
C.TensorG.t
val logspace_out :
out:unit Ctypes.ptr ->
start:unit Ctypes.ptr ->
end_:unit Ctypes.ptr ->
steps:int ->
base:float ->
C.TensorG.t
val logsumexp : unit Ctypes.ptr -> dim:int list -> keepdim:bool -> C.TensorG.t
val logsumexp_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int list ->
keepdim:bool ->
C.TensorG.t
val lstm :
unit Ctypes.ptr ->
hx:C.TensorG.t list ->
params:C.TensorG.t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
batch_first:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val lstm_cell :
unit Ctypes.ptr ->
hx:C.TensorG.t list ->
w_ih:unit Ctypes.ptr ->
w_hh:unit Ctypes.ptr ->
b_ih:unit Ctypes.ptr option ->
b_hh:unit Ctypes.ptr option ->
C.TensorG.t * C.TensorG.t
val lstm_data :
data:unit Ctypes.ptr ->
batch_sizes:unit Ctypes.ptr ->
hx:C.TensorG.t list ->
params:C.TensorG.t list ->
has_biases:bool ->
num_layers:int ->
dropout:float ->
train:bool ->
bidirectional:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val lstsq : unit Ctypes.ptr -> a:unit Ctypes.ptr -> C.TensorG.t * C.TensorG.t
val lstsq_x :
x:unit Ctypes.ptr ->
qr:unit Ctypes.ptr ->
unit Ctypes.ptr ->
a:unit Ctypes.ptr ->
C.TensorG.t * C.TensorG.t
val lt : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val lt_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val lt_scalar_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val lt_tensor : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val lt_tensor_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val lt_tensor_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val lu_solve :
unit Ctypes.ptr ->
lu_data:unit Ctypes.ptr ->
lu_pivots:unit Ctypes.ptr ->
C.TensorG.t
val lu_solve_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
lu_data:unit Ctypes.ptr ->
lu_pivots:unit Ctypes.ptr ->
C.TensorG.t
val lu_unpack :
lu_data:unit Ctypes.ptr ->
lu_pivots:unit Ctypes.ptr ->
unpack_data:bool ->
unpack_pivots:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val lu_unpack_out :
p:unit Ctypes.ptr ->
l:unit Ctypes.ptr ->
u:unit Ctypes.ptr ->
lu_data:unit Ctypes.ptr ->
lu_pivots:unit Ctypes.ptr ->
unpack_data:bool ->
unpack_pivots:bool ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val margin_ranking_loss :
input1:unit Ctypes.ptr ->
input2:unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
margin:float ->
reduction:Reduction.t ->
C.TensorG.t
val masked_fill :
unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
value:unit Ctypes.ptr ->
C.TensorG.t
val masked_fill_ :
unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
value:unit Ctypes.ptr ->
C.TensorG.t
val masked_fill_tensor :
unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
value:unit Ctypes.ptr ->
C.TensorG.t
val masked_fill_tensor_ :
unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
value:unit Ctypes.ptr ->
C.TensorG.t
val masked_scatter :
unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
source:unit Ctypes.ptr ->
C.TensorG.t
val masked_scatter_ :
unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
source:unit Ctypes.ptr ->
C.TensorG.t
val masked_select : unit Ctypes.ptr -> mask:unit Ctypes.ptr -> C.TensorG.t
val masked_select_backward :
grad:unit Ctypes.ptr ->
unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
C.TensorG.t
val masked_select_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
mask:unit Ctypes.ptr ->
C.TensorG.t
val matmul : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val matmul_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val matrix_exp : unit Ctypes.ptr -> C.TensorG.t
val matrix_exp_backward :
unit Ctypes.ptr ->
grad:unit Ctypes.ptr ->
C.TensorG.t
val matrix_power : unit Ctypes.ptr -> n:int -> C.TensorG.t
val matrix_power_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
n:int ->
C.TensorG.t
val matrix_rank : unit Ctypes.ptr -> symmetric:bool -> C.TensorG.t
val matrix_rank_tol :
unit Ctypes.ptr ->
tol:float ->
symmetric:bool ->
C.TensorG.t
val max : unit Ctypes.ptr -> C.TensorG.t
val max_dim :
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val max_dim_max :
max:unit Ctypes.ptr ->
max_values:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val max_other : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val max_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val max_pool1d :
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t
val max_pool1d_with_indices :
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t * C.TensorG.t
val max_pool2d :
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t
val max_pool2d_with_indices :
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t * C.TensorG.t
val max_pool2d_with_indices_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val max_pool2d_with_indices_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val max_pool2d_with_indices_out :
out:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t * C.TensorG.t
val max_pool3d :
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t
val max_pool3d_with_indices :
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t * C.TensorG.t
val max_pool3d_with_indices_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val max_pool3d_with_indices_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
indices:unit Ctypes.ptr ->
C.TensorG.t
val max_pool3d_with_indices_out :
out:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t * C.TensorG.t
val max_unpool2d :
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val max_unpool2d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val max_unpool2d_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val max_unpool2d_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val max_unpool3d :
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
output_size:int list ->
stride:int list ->
padding:int list ->
C.TensorG.t
val max_unpool3d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
output_size:int list ->
stride:int list ->
padding:int list ->
C.TensorG.t
val max_unpool3d_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
output_size:int list ->
stride:int list ->
padding:int list ->
C.TensorG.t
val max_unpool3d_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
output_size:int list ->
stride:int list ->
padding:int list ->
C.TensorG.t
val maximum : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val maximum_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val mean : unit Ctypes.ptr -> dtype:Kind.packed -> C.TensorG.t
val mean_dim :
unit Ctypes.ptr ->
dim:int list ->
keepdim:bool ->
dtype:Kind.packed ->
C.TensorG.t
val mean_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int list ->
keepdim:bool ->
dtype:Kind.packed ->
C.TensorG.t
val median : unit Ctypes.ptr -> C.TensorG.t
val median_dim :
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val median_dim_values :
values:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val meshgrid : C.TensorG.t list -> unit Ctypes.ptr list
val meshgrid_indexing :
C.TensorG.t list ->
indexing:string ->
unit Ctypes.ptr list
val min : unit Ctypes.ptr -> C.TensorG.t
val min_dim :
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val min_dim_min :
min:unit Ctypes.ptr ->
min_indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val min_other : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val min_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val minimum : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val minimum_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val miopen_batch_norm :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
running_mean:unit Ctypes.ptr option ->
running_var:unit Ctypes.ptr option ->
training:bool ->
exponential_average_factor:float ->
epsilon:float ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val miopen_batch_norm_backward :
unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
running_mean:unit Ctypes.ptr option ->
running_var:unit Ctypes.ptr option ->
save_mean:unit Ctypes.ptr option ->
save_var:unit Ctypes.ptr option ->
epsilon:float ->
C.TensorG.t * C.TensorG.t * C.TensorG.t
val miopen_convolution :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val miopen_convolution_backward_bias :
grad_output:unit Ctypes.ptr ->
C.TensorG.t
val miopen_convolution_backward_input :
self_size:int list ->
grad_output:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val miopen_convolution_backward_weight :
weight_size:int list ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val miopen_convolution_transpose :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
padding:int list ->
output_padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val miopen_convolution_transpose_backward_input :
grad_output:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val miopen_convolution_transpose_backward_weight :
weight_size:int list ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val miopen_depthwise_convolution :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val miopen_depthwise_convolution_backward_input :
self_size:int list ->
grad_output:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val miopen_depthwise_convolution_backward_weight :
weight_size:int list ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
benchmark:bool ->
deterministic:bool ->
C.TensorG.t
val miopen_rnn :
unit Ctypes.ptr ->
weight:C.TensorG.t list ->
weight_stride0:int ->
hx:unit Ctypes.ptr ->
cx:unit Ctypes.ptr option ->
mode:int ->
hidden_size:int ->
num_layers:int ->
batch_first:bool ->
dropout:float ->
train:bool ->
bidirectional:bool ->
batch_sizes:int list ->
dropout_state:unit Ctypes.ptr option ->
C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t * C.TensorG.t
val mish : unit Ctypes.ptr -> C.TensorG.t
val mish_ : unit Ctypes.ptr -> C.TensorG.t
val mish_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val mish_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val mkldnn_adaptive_avg_pool2d :
unit Ctypes.ptr ->
output_size:int list ->
C.TensorG.t
val mkldnn_adaptive_avg_pool2d_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t
val mkldnn_convolution :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
C.TensorG.t
val mkldnn_convolution_backward_input :
self_size:int list ->
grad_output:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
bias_defined:bool ->
C.TensorG.t
val mkldnn_convolution_backward_weights :
weight_size:int list ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
bias_defined:bool ->
C.TensorG.t * C.TensorG.t
val mkldnn_linear :
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias:unit Ctypes.ptr option ->
C.TensorG.t
val mkldnn_linear_backward_input :
input_size:int list ->
grad_output:unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
C.TensorG.t
val mkldnn_linear_backward_weights :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
weight:unit Ctypes.ptr ->
bias_defined:bool ->
C.TensorG.t * C.TensorG.t
val mkldnn_max_pool2d :
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t
val mkldnn_max_pool2d_backward :
grad_output:unit Ctypes.ptr ->
output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t
val mkldnn_max_pool3d :
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t
val mkldnn_max_pool3d_backward :
grad_output:unit Ctypes.ptr ->
output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
kernel_size:int list ->
stride:int list ->
padding:int list ->
dilation:int list ->
ceil_mode:bool ->
C.TensorG.t
val mkldnn_reorder_conv2d_weight :
unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
C.TensorG.t
val mkldnn_reorder_conv3d_weight :
unit Ctypes.ptr ->
padding:int list ->
stride:int list ->
dilation:int list ->
groups:int ->
C.TensorG.t
val mm : unit Ctypes.ptr -> mat2:unit Ctypes.ptr -> C.TensorG.t
val mm_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
mat2:unit Ctypes.ptr ->
C.TensorG.t
val mode :
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val mode_values :
values:unit Ctypes.ptr ->
indices:unit Ctypes.ptr ->
unit Ctypes.ptr ->
dim:int ->
keepdim:bool ->
C.TensorG.t * C.TensorG.t
val moveaxis :
unit Ctypes.ptr ->
source:int list ->
destination:int list ->
C.TensorG.t
val moveaxis_int :
unit Ctypes.ptr ->
source:int ->
destination:int ->
C.TensorG.t
val movedim :
unit Ctypes.ptr ->
source:int list ->
destination:int list ->
C.TensorG.t
val movedim_int :
unit Ctypes.ptr ->
source:int ->
destination:int ->
C.TensorG.t
val mse_loss :
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
C.TensorG.t
val mse_loss_backward :
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
C.TensorG.t
val mse_loss_backward_grad_input :
grad_input:unit Ctypes.ptr ->
grad_output:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
C.TensorG.t
val mse_loss_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
target:unit Ctypes.ptr ->
reduction:Reduction.t ->
C.TensorG.t
val msort : unit Ctypes.ptr -> C.TensorG.t
val msort_out : out:unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val mul : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val mul_ : unit Ctypes.ptr -> unit Ctypes.ptr -> C.TensorG.t
val mul_out :
out:unit Ctypes.ptr ->
unit Ctypes.ptr ->
unit Ctypes.ptr ->
C.TensorG.t