package containers

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

Array utils

type 'a sequence = ('a -> unit) -> unit
  • deprecated

    use 'a iter instead

type 'a iter = ('a -> unit) -> unit

Fast internal iterator.

  • since 2.8
type 'a klist = unit -> [ `Nil | `Cons of 'a * 'a klist ]
type 'a gen = unit -> 'a option
type 'a equal = 'a -> 'a -> bool
type 'a ord = 'a -> 'a -> int
type 'a random_gen = Random.State.t -> 'a
type 'a printer = Format.formatter -> 'a -> unit

Arrays

include module type of CCShimsArrayLabels_
include module type of ArrayLabels with module Floatarray = Stdlib.Array.Floatarray
val make : int -> 'a -> 'a array

Array.make n x returns a fresh array of length n, initialized with x. All the elements of this new array are initially physically equal to x (in the sense of the == predicate). Consequently, if x is mutable, it is shared among all elements of the array, and modifying x through one of the array entries will modify all other entries at the same time.

Raise Invalid_argument if n < 0 or n > Sys.max_array_length. If the value of x is a floating-point number, then the maximum size is only Sys.max_array_length / 2.

val create : int -> 'a -> 'a array
  • deprecated

    Array.create is an alias for Array.make.

val init : int -> f:(int -> 'a) -> 'a array

Array.init n f returns a fresh array of length n, with element number i initialized to the result of f i. In other terms, Array.init n f tabulates the results of f applied to the integers 0 to n-1.

Raise Invalid_argument if n < 0 or n > Sys.max_array_length. If the return type of f is float, then the maximum size is only Sys.max_array_length / 2.

val make_matrix : dimx:int -> dimy:int -> 'a -> 'a array array

Array.make_matrix dimx dimy e returns a two-dimensional array (an array of arrays) with first dimension dimx and second dimension dimy. All the elements of this new matrix are initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation m.(x).(y).

Raise Invalid_argument if dimx or dimy is negative or greater than Sys.max_array_length. If the value of e is a floating-point number, then the maximum size is only Sys.max_array_length / 2.

val create_matrix : dimx:int -> dimy:int -> 'a -> 'a array array
val append : 'a array -> 'a array -> 'a array

Array.append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and v2.

val concat : 'a array list -> 'a array

Same as Array.append, but concatenates a list of arrays.

val sub : 'a array -> pos:int -> len:int -> 'a array

Array.sub a start len returns a fresh array of length len, containing the elements number start to start + len - 1 of array a.

Raise Invalid_argument "Array.sub" if start and len do not designate a valid subarray of a; that is, if start < 0, or len < 0, or start + len > Array.length a.

val copy : 'a array -> 'a array

Array.copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val fill : 'a array -> pos:int -> len:int -> 'a -> unit

Array.fill a ofs len x modifies the array a in place, storing x in elements number ofs to ofs + len - 1.

Raise Invalid_argument "Array.fill" if ofs and len do not designate a valid subarray of a.

val to_list : 'a array -> 'a list

Array.to_list a returns the list of all the elements of a.

val of_list : 'a list -> 'a array

Array.of_list l returns a fresh array containing the elements of l.

val mapi : f:(int -> 'a -> 'b) -> 'a array -> 'b array

Same as Array.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.

val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b array -> 'a

Array.fold_left f x a computes f (... (f (f x a.(0)) a.(1)) ...) a.(n-1), where n is the length of the array a.

val fold_right : f:('b -> 'a -> 'a) -> 'b array -> init:'a -> 'a

Array.fold_right f a x computes f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...)), where n is the length of the array a.

Iterators on two arrays
Array scanning
val mem : 'a -> set:'a array -> bool

mem x a is true if and only if x is equal to an element of a.

  • since 4.03.0
val memq : 'a -> set:'a array -> bool

Same as Array.mem, but uses physical equality instead of structural equality to compare list elements.

  • since 4.03.0
val create_float : int -> float array

Array.create_float n returns a fresh float array of length n, with uninitialized data.

  • since 4.03
val make_float : int -> float array

Sorting

val sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Sort an array in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see below for a complete specification). For example, Pervasives.compare is a suitable comparison function, provided there are no floating-point NaN values in the data. After calling Array.sort, the array is sorted in place in increasing order. Array.sort is guaranteed to run in constant heap space and (at most) logarithmic stack space.

The current implementation uses Heap Sort. It runs in constant stack space.

Specification of the comparison function: Let a be the array and cmp the comparison function. The following must be true for all x, y, z in a :

  • cmp x y > 0 if and only if cmp y x < 0
  • if cmp x y >= 0 and cmp y z >= 0 then cmp x z >= 0

When Array.sort returns, a contains the same elements as before, reordered in such a way that for all i and j valid indices of a :

  • cmp a.(i) a.(j) >= 0 if and only if i >= j
val stable_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Same as Array.sort, but the sorting algorithm is stable (i.e. elements that compare equal are kept in their original order) and not guaranteed to run in constant heap space.

The current implementation uses Merge Sort. It uses n/2 words of heap space, where n is the length of the array. It is usually faster than the current implementation of Array.sort.

val fast_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Same as Array.sort or Array.stable_sort, whichever is faster on typical input.

Iterators
val to_seqi : 'a array -> (int * 'a) Seq.t

Iterate on the array, in increasing order, yielding indices along elements

  • since 4.07
val of_seq : 'a Seq.t -> 'a array

Create an array from the generator

  • since 4.07
type 'a t = 'a array
val empty : 'a t

empty is the empty array, physically equal to ||.

val equal : 'a equal -> 'a t equal

equal eq a1 a2 is true if the lengths of a1 and a2 are the same and if their corresponding elements test equal, using eq.

val compare : 'a ord -> 'a t ord

compare cmp a1 a2 compares arrays a1 and a2 using the function comparison cmp.

val swap : 'a t -> int -> int -> unit

swap a i j swaps elements at indices i and j.

  • since 1.4
val get : 'a t -> int -> 'a

get a n returns the element number n of array a. The first element has number 0. The last element has number length a - 1. You can also write a.(n) instead of get a n.

Raise Invalid_argument "index out of bounds" if n is outside the range 0 to (length a - 1).

val get_safe : 'a t -> int -> 'a option

get_safe a i returns Some a.(i) if i is a valid index.

  • since 0.18
val set : 'a t -> int -> 'a -> unit

set a n x modifies array a in place, replacing element number n with x. You can also write a.(n) <- x instead of set a n x.

Raise Invalid_argument "index out of bounds" if n is outside the range 0 to length a - 1.

val length : _ t -> int

length a returns the length (number of elements) of the given array a.

val fold : f:('a -> 'b -> 'a) -> init:'a -> 'b t -> 'a

fold ~f ~init a computes ~f (... (~f (~f ~init a.(0)) a.(1)) ...) a.(n-1), where n is the length of the array a.

val foldi : f:('a -> int -> 'b -> 'a) -> init:'a -> 'b t -> 'a

foldi ~f ~init a is just like fold, but it also passes in the index of each element as the second argument to the folded function ~f.

val fold_while : f:('a -> 'b -> 'a * [ `Stop | `Continue ]) -> init:'a -> 'b t -> 'a

fold_while ~f ~init a folds left on array a until a stop condition via ('a, `Stop) is indicated by the accumulator.

  • since 0.8
val fold_map : f:('acc -> 'a -> 'acc * 'b) -> init:'acc -> 'a t -> 'acc * 'b t

fold_map ~f ~init a is a fold_left-like function, but it also maps the array to another array.

  • since 1.2, but only
  • since 2.1 with labels
val scan_left : f:('acc -> 'a -> 'acc) -> init:'acc -> 'a t -> 'acc t

scan_left ~f ~init a returns the array [|~init; ~f ~init x0; ~f (~f ~init a.(0)) a.(1); …|] .

  • since 1.2, but only
  • since 2.1 with labels
val iter : f:('a -> unit) -> 'a t -> unit

iter ~f a applies function ~f in turn to all elements of a. It is equivalent to ~f a.(0); ~f a.(1); ...; ~f a.(length a - 1); ().

val iteri : f:(int -> 'a -> unit) -> 'a t -> unit

iteri ~f a is like iter, but the function ~f is applied with the index of the element as first argument, and the element itself as second argument.

val blit : 'a t -> int -> 'a t -> int -> int -> unit

blit a1 o1 a2 o2 len copies len elements from array a1, starting at element number o1, to array a2, starting at element number o2. It works correctly even if a1 and a2 are the same array, and the source and destination chunks overlap.

Raise Invalid_argument "CCArray.blit" if o1 and len do not designate a valid subarray of a1, or if o2 and len do not designate a valid subarray of a2.

val reverse_in_place : 'a t -> unit

reverse_in_place a reverses the array a in place.

val sorted : f:('a -> 'a -> int) -> 'a t -> 'a array

sorted ~f a makes a copy of a and sorts it with ~f.

  • since 1.0
val sort_indices : f:('a -> 'a -> int) -> 'a t -> int array

sort_indices ~f a returns a new array b, with the same length as a, such that b.(i) is the index at which the i-th element of sorted ~f a appears in a. a is not modified.

In other words, map (fun i -> a.(i)) (sort_indices ~f a) = sorted ~f a. sort_indices yields the inverse permutation of sort_ranking.

  • since 1.0
val sort_ranking : f:('a -> 'a -> int) -> 'a t -> int array

sort_ranking ~f a returns a new array b, with the same length as a, such that b.(i) is the index at which the i-th element of a appears in sorted ~f a. a is not modified.

In other words, map (fun i -> (sorted ~f a).(i)) (sort_ranking ~f a) = a. sort_ranking yields the inverse permutation of sort_indices.

In the absence of duplicate elements in a, we also have lookup_exn a.(i) (sorted a) = (sorted_ranking a).(i).

  • since 1.0
val find_map : f:('a -> 'b option) -> 'a t -> 'b option

find_map ~f a returns Some y if there is an element x such that ~f x = Some y. Otherwise returns None.

  • since 1.3, but only
  • since 2.1 with labels
val find : f:('a -> 'b option) -> 'a t -> 'b option
  • deprecated use find_map instead
val find_map_i : f:(int -> 'a -> 'b option) -> 'a t -> 'b option

find_map_i ~f a is like find_map, but the index of the element is also passed to the predicate function ~f.

  • since 1.3, but only
  • since 2.1 with labels
val findi : f:(int -> 'a -> 'b option) -> 'a t -> 'b option
  • deprecated use find_map_i instead
val find_idx : f:('a -> bool) -> 'a t -> (int * 'a) option

find_idx ~f a returns Some (i,x) where x is the i-th element of a, and ~f x holds. Otherwise returns None.

  • since 0.3.4
val lookup : cmp:'a ord -> key:'a -> 'a t -> int option

lookup ~cmp ~key a lookups the index of some key ~key in a sorted array a. Undefined behavior if the array a is not sorted wrt ~cmp. Complexity: O(log (n)) (dichotomic search).

  • returns

    None if the key ~key is not present, or Some i (i the index of the key) otherwise.

val lookup_exn : cmp:'a ord -> key:'a -> 'a t -> int

lookup_exn ~cmp ~key a is like lookup, but

  • raises Not_found

    if the key ~key is not present.

val bsearch : cmp:('a -> 'a -> int) -> key:'a -> 'a t -> [ `All_lower | `All_bigger | `Just_after of int | `Empty | `At of int ]

bsearch ~cmp ~key a finds the index of the object ~key in the array a, provided a is sorted using ~cmp. If the array is not sorted, the result is not specified (may raise Invalid_argument).

Complexity: O(log n) where n is the length of the array a (dichotomic search).

  • returns
    • `At i if cmp a.(i) key = 0 (for some i).
    • `All_lower if all elements of a are lower than key.
    • `All_bigger if all elements of a are bigger than key.
    • `Just_after i if a.(i) < key < a.(i+1).
    • `Empty if the array a is empty.
  • raises Invalid_argument

    if the array is found to be unsorted w.r.t cmp.

  • since 0.13
val for_all : f:('a -> bool) -> 'a t -> bool

for_all ~f [|a1; ...; an|] is true if all elements of the array satisfy the predicate ~f. That is, it returns (~f a1) && (~f a2) && ... && (~f an).

val for_all2 : f:('a -> 'b -> bool) -> 'a t -> 'b t -> bool

for_all2 ~f [|a1; ...; an|] [|b1; ...; bn|] is true if each pair of elements ai bi satisfies the predicate ~f. That is, it returns (~f a1 b1) && (~f a2 b2) && ... && (~f an bn).

  • raises Invalid_argument

    if arrays have distinct lengths. Allow different types.

  • since 0.20
val exists : f:('a -> bool) -> 'a t -> bool

exists ~f [|a1; ...; an|] is true if at least one element of the array satisfies the predicate ~f. That is, it returns (~f a1) || (~f a2) || ... || (~f an).

val exists2 : f:('a -> 'b -> bool) -> 'a t -> 'b t -> bool

exists2 ~f [|a1; ...; an|] [|b1; ...; bn|] is true if any pair of elements ai bi satisfies the predicate ~f. That is, it returns (~f a1 b1) || (~f a2 b2) || ... || (~f an bn).

  • raises Invalid_argument

    if arrays have distinct lengths. Allow different types.

  • since 0.20
val fold2 : f:('acc -> 'a -> 'b -> 'acc) -> init:'acc -> 'a t -> 'b t -> 'acc

fold2 ~f ~init a b fold on two arrays a and b stepwise. It computes ~f (... (~f ~init a1 b1)...) an bn.

  • raises Invalid_argument

    if a and b have distinct lengths.

  • since 0.20
val iter2 : f:('a -> 'b -> unit) -> 'a t -> 'b t -> unit

iter2 ~f a b iterates on the two arrays a and b stepwise. It is equivalent to ~f a0 b0; ...; ~f a.(length a - 1) b.(length b - 1); ().

  • raises Invalid_argument

    if a and b have distinct lengths.

  • since 0.20
val shuffle : 'a t -> unit

shuffle a randomly shuffles the array a, in place.

val shuffle_with : Random.State.t -> 'a t -> unit

shuffle_with rs a randomly shuffles the array a (like shuffle) but a specialized random state rs is used to control the random numbers being produced during shuffling (for reproducibility).

val random_choose : 'a t -> 'a random_gen

random_choose a rs randomly chooses an element of a.

  • raises Not_found

    if the array/slice is empty.

val to_string : ?sep:string -> ('a -> string) -> 'a array -> string

to_string ~sep item_to_string a print a to a string using sep as a separator between elements of a.

  • since 2.7
val to_iter : 'a t -> 'a iter

to_iter a returns an iter of the elements of an array a. The input array a is shared with the sequence and modification of it will result in modification of the iterator.

  • since 2.8
val to_std_seq : 'a t -> 'a Seq.t

to_std_seq a returns a Seq.t of the elements of an array a. The input array a is shared with the sequence and modification of it will result in modification of the sequence.

  • since 2.8
val to_seq : 'a t -> 'a sequence
  • deprecated use to_iter or to_std_seq
val to_gen : 'a t -> 'a gen

to_gen a returns a gen of the elements of an array a.

val to_klist : 'a t -> 'a klist
  • deprecated use to_std_seq

IO

val pp : ?sep:string -> 'a printer -> 'a t printer

pp ~sep pp_item ppf a formats the array a on ppf. Each element is formatted with pp_item and elements are separated by sep (defaults to ", ").

val pp_i : ?sep:string -> (int -> 'a printer) -> 'a t printer

pp_i ~sep pp_item ppf a prints the array a on ppf. The printing function pp_item is giving both index and element. Elements are separated by sep (defaults to ", ").

val map : f:('a -> 'b) -> 'a t -> 'b t

map ~f a applies function f to all elements of a, and builds an array with the results returned by ~f: [| ~f a.(0); ~f a.(1); ...; ~f a.(length a - 1) |].

val map2 : f:('a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t

map2 ~f a b applies function ~f to all elements of a and b, and builds an array with the results returned by ~f: [| ~f a.(0) b.(0); ...; ~f a.(length a - 1) b.(length b - 1)|].

  • raises Invalid_argument

    if a and b have distinct lengths.

  • since 0.20
val rev : 'a t -> 'a t

rev a copies the array a and reverses it in place.

  • since 0.20
val filter : f:('a -> bool) -> 'a t -> 'a t

filter ~f a filters elements out of the array a. Only the elements satisfying the given predicate ~f will be kept.

val filter_map : f:('a -> 'b option) -> 'a t -> 'b t

filter_map ~f [|a1; ...; an|] calls (~f a1) ... (~f an) and returns an array b consisting of all elements bi such as ~f ai = Some bi. When ~f returns None, the corresponding element of a is discarded.

val monoid_product : f:('a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t

All combinaisons of tuples from the two arrays are passed to the function

  • since 2.8
val flat_map : f:('a -> 'b t) -> 'a t -> 'b array

flat_map ~f a transforms each element of a into an array, then flattens.

val (>>=) : 'a t -> ('a -> 'b t) -> 'b t

a >>= f is the infix version of flat_map.

val (>>|) : 'a t -> ('a -> 'b) -> 'b t

a >>| f is the infix version of map.

  • since 0.8
val (>|=) : 'a t -> ('a -> 'b) -> 'b t

a >|= f is the infix version of map.

  • since 0.8
val except_idx : 'a t -> int -> 'a list

except_idx a i removes the element of a at given index i, and returns the list of the other elements.

val (--) : int -> int -> int t

x -- y creates an array containing integers in the range x .. y. Bounds included.

val (--^) : int -> int -> int t

x --^ y creates an array containing integers in the range x .. y. Right bound excluded.

  • since 0.17
val random : 'a random_gen -> 'a t random_gen
val random_non_empty : 'a random_gen -> 'a t random_gen
val random_len : int -> 'a random_gen -> 'a t random_gen

Generic Functions

module type MONO_ARRAY = sig ... end
val sort_generic : (module MONO_ARRAY with type elt = 'elt and type t = 'arr) -> cmp:('elt -> 'elt -> int) -> 'arr -> unit

sort_generic (module M) ~cmp a sorts the array a, without allocating (eats stack space though). Performance might be lower than Array.sort.

  • since 0.14

Infix Operators

It is convenient to openCCArray.Infix to access the infix operators without cluttering the scope too much.

  • since 2.7
module Infix : sig ... end

Let operators on OCaml >= 4.08.0, nothing otherwise

  • since 2.8
include CCShimsMkLet_.S with type 'a t_let := 'a array
OCaml

Innovation. Community. Security.