package coq-core

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val mk_rel_id : Names.Id.t -> Names.Id.t
val mk_correct_id : Names.Id.t -> Names.Id.t
val mk_complete_id : Names.Id.t -> Names.Id.t
val mk_equation_id : Names.Id.t -> Names.Id.t
val fresh_id : Names.Id.t list -> string -> Names.Id.t
val fresh_name : Names.Id.t list -> string -> Names.Name.t
val get_name : Names.Id.t list -> ?default:string -> Names.Name.t -> Names.Name.t
val array_get_start : 'a array -> 'a array
val locate_ind : Libnames.qualid -> Names.inductive
val locate_constant : Libnames.qualid -> Names.Constant.t
val locate_with_msg : Pp.t -> (Libnames.qualid -> 'a) -> Libnames.qualid -> 'a
val filter_map : ('a -> bool) -> ('a -> 'b) -> 'a list -> 'b list
val list_union_eq : ('a -> 'a -> bool) -> 'a list -> 'a list -> 'a list
val list_add_set_eq : ('a -> 'a -> bool) -> 'a -> 'a list -> 'a list
val eq : EConstr.constr Stdlib.Lazy.t
val refl_equal : EConstr.constr Stdlib.Lazy.t
val jmeq : unit -> EConstr.constr
val jmeq_refl : unit -> EConstr.constr
val make_eq : unit -> EConstr.constr
val with_full_print : ('a -> 'b) -> 'a -> 'b
type function_info = {
  1. function_constant : Names.Constant.t;
  2. graph_ind : Names.inductive;
  3. equation_lemma : Names.Constant.t option;
  4. correctness_lemma : Names.Constant.t option;
  5. completeness_lemma : Names.Constant.t option;
  6. rect_lemma : Names.Constant.t option;
  7. rec_lemma : Names.Constant.t option;
  8. prop_lemma : Names.Constant.t option;
  9. sprop_lemma : Names.Constant.t option;
  10. is_general : bool;
}
val find_Function_infos : Names.Constant.t -> function_info option
val find_Function_of_graph : Names.inductive -> function_info option
val add_Function : bool -> Names.Constant.t -> unit
val update_Function : function_info -> unit

debugging

val pr_table : Environ.env -> Evd.evar_map -> Pp.t
val observe_tac : header:Pp.t -> (Environ.env -> Evd.evar_map -> Pp.t) -> unit Proofview.tactic -> unit Proofview.tactic
val observe : Pp.t -> unit
val do_observe : unit -> bool
val do_rewrite_dependent : unit -> bool
exception Building_graph of exn
exception Defining_principle of exn
exception ToShow of exn
val is_strict_tcc : unit -> bool
val h_intros : Names.Id.t list -> unit Proofview.tactic
val h_id : Names.Id.t
val hrec_id : Names.Id.t
val acc_inv_id : EConstr.constr Util.delayed
val well_founded_ltof : EConstr.constr Util.delayed
val well_founded : EConstr.constr Util.delayed
val evaluable_of_global_reference : Names.GlobRef.t -> Tacred.evaluable_global_reference
val list_rewrite : bool -> (EConstr.constr * bool) list -> unit Proofview.tactic
val decompose_lam_n : Evd.evar_map -> int -> EConstr.t -> (Names.Name.t Context.binder_annot * EConstr.t) list * EConstr.t
type tcc_lemma_value =
  1. | Undefined
  2. | Value of Constr.t
  3. | Not_needed
val funind_purify : ('a -> 'b) -> 'a -> 'b
OCaml

Innovation. Community. Security.