package coq

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type pa_constructor = {
  1. cnode : int;
  2. arity : int;
  3. args : int list;
}
type pa_fun = {
  1. fsym : int;
  2. fnargs : int;
}
module PafMap : CSig.MapS with type key = pa_fun
module PacMap : CSig.MapS with type key = pa_constructor
type cinfo = {
  1. ci_constr : Constr.pconstructor;
  2. ci_arity : int;
  3. ci_nhyps : int;
}
type 'a term
module ATerm : sig ... end
module Constrhash : Stdlib.Hashtbl.S with type key = Constr.constr
module Termhash : Stdlib.Hashtbl.S with type key = ATerm.t
type ccpattern =
  1. | PApp of ATerm.t * ccpattern list
  2. | PVar of int * ccpattern list
type rule =
  1. | Congruence
  2. | Axiom of Constr.constr * bool
  3. | Injection of int * pa_constructor * int * pa_constructor * int
type from =
  1. | Goal
  2. | Hyp of Constr.constr
  3. | HeqG of Constr.constr
  4. | HeqnH of Constr.constr * Constr.constr
type 'a eq = {
  1. lhs : int;
  2. rhs : int;
  3. rule : 'a;
}
type equality = rule eq
type disequality = from eq
type patt_kind =
  1. | Normal
  2. | Trivial of Constr.types
  3. | Creates_variables
type quant_eq = {
  1. qe_hyp_id : Names.Id.t;
  2. qe_pol : bool;
  3. qe_nvars : int;
  4. qe_lhs : ccpattern;
  5. qe_lhs_valid : patt_kind;
  6. qe_rhs : ccpattern;
  7. qe_rhs_valid : patt_kind;
}
type inductive_status =
  1. | Unknown
  2. | Partial of pa_constructor
  3. | Partial_applied
  4. | Total of int * pa_constructor
type representative = {
  1. mutable weight : int;
  2. mutable lfathers : Int.Set.t;
  3. mutable fathers : Int.Set.t;
  4. mutable inductive_status : inductive_status;
  5. class_type : Constr.types;
  6. mutable functions : Int.Set.t PafMap.t;
}
type cl =
  1. | Rep of representative
  2. | Eqto of int * equality
type vertex =
  1. | Leaf
  2. | Node of int * int
type node = {
  1. mutable clas : cl;
  2. mutable cpath : int;
  3. mutable constructors : int PacMap.t;
  4. vertex : vertex;
  5. aterm : ATerm.t;
}
type forest = {
  1. mutable max_size : int;
  2. mutable size : int;
  3. mutable map : node array;
  4. axioms : (ATerm.t * ATerm.t) Constrhash.t;
  5. mutable epsilons : pa_constructor list;
  6. syms : int Termhash.t;
}
type state
type explanation =
  1. | Discrimination of int * pa_constructor * int * pa_constructor
  2. | Contradiction of disequality
  3. | Incomplete
type matching_problem
val debug_congruence : CDebug.t
val forest : state -> forest
val axioms : forest -> (ATerm.t * ATerm.t) Constrhash.t
val epsilons : forest -> pa_constructor list
val empty : Environ.env -> Evd.evar_map -> int -> state
val add_aterm : state -> ATerm.t -> int
val add_equality : state -> Constr.constr -> ATerm.t -> ATerm.t -> unit
val add_disequality : state -> from -> ATerm.t -> ATerm.t -> unit
val add_quant : state -> Names.Id.t -> bool -> (int * patt_kind * ccpattern * patt_kind * ccpattern) -> unit
val tail_pac : pa_constructor -> pa_constructor
val find : forest -> int -> int
val find_oldest_pac : forest -> int -> pa_constructor -> int
val aterm : forest -> int -> ATerm.t
val get_constructor_info : forest -> int -> cinfo
val subterms : forest -> int -> int * int
val join_path : forest -> int -> int -> ((int * int) * equality) list * ((int * int) * equality) list
val execute : bool -> state -> explanation option
val pr_idx_term : Environ.env -> Evd.evar_map -> forest -> int -> Pp.t
OCaml

Innovation. Community. Security.