include module type of Base_bigstring
with type t := t
and type t_frozen := t_frozen
Types and exceptions
include Ppx_compare_lib.Comparable.S with type t := t
val compare : t Base__Ppx_compare_lib.compare
include Sexplib0.Sexpable.S with type t := t
val t_of_sexp : Sexplib0__.Sexp.t -> t
val sexp_of_t : t -> Sexplib0__.Sexp.t
val hash_fold_t_frozen :
Ppx_hash_lib.Std.Hash.state ->
t_frozen ->
Ppx_hash_lib.Std.Hash.state
val hash_t_frozen : t_frozen -> Ppx_hash_lib.Std.Hash.hash_value
val sexp_of_t_frozen : t_frozen -> Sexplib0.Sexp.t
val t_frozen_of_sexp : Sexplib0.Sexp.t -> t_frozen
include Base.Equal.S with type t := t
val equal : t Base__Equal.equal
Creation and string conversion
val init : Base.int -> f:(Base.int -> Base.char) -> t
init n ~f
creates a bigstring t
of length n
, with t.{i} = f i
.
val of_string : ?pos:Base.int -> ?len:Base.int -> Base.string -> t
val of_bytes : ?pos:Base.int -> ?len:Base.int -> Base.bytes -> t
val to_string : ?pos:Base.int -> ?len:Base.int -> t -> Base.string
val to_bytes : ?pos:Base.int -> ?len:Base.int -> t -> Base.bytes
val concat : ?sep:t -> t Base.list -> t
concat ?sep list
returns the concatenation of list
with sep
in between each.
Checking
val check_args :
loc:Base.string ->
pos:Base.int ->
len:Base.int ->
t ->
Base.unit
check_args ~loc ~pos ~len bstr
checks the position and length arguments pos
and len
for bigstrings bstr
.
val get_opt_len : t -> pos:Base.int -> Base.int Base.option -> Base.int
get_opt_len bstr ~pos opt_len
Accessors
val length : t -> Base.int
val get : t -> Base.int -> Base.char
get t pos
returns the character at pos
val unsafe_get : t -> Base.int -> Base.char
unsafe_get t pos
returns the character at pos
, without bounds checks.
val set : t -> Base.int -> Base.char -> Base.unit
set t pos
sets the character at pos
val unsafe_set : t -> Base.int -> Base.char -> Base.unit
unsafe_set t pos
sets the character at pos
, without bounds checks.
val is_mmapped : t -> Base.bool
Blitting
blit ~src ?src_pos ?src_len ~dst ?dst_pos ()
blits src_len
characters from src
starting at position src_pos
to dst
at position dst_pos
.
include Base.Blit.S with type t := t
val blit : (t, t) Base__Blit_intf.blit
val blito : (t, t) Base__Blit_intf.blito
val unsafe_blit : (t, t) Base__Blit_intf.blit
val sub : (t, t) Base__Blit_intf.sub
val subo : (t, t) Base__Blit_intf.subo
val memset : t -> pos:Base.int -> len:Base.int -> Base.char -> Base.unit
memset t ~pos ~len c
fills t
with c
within the range [pos, pos + len)
.
Memcmp
val memcmp :
t ->
pos1:Base.int ->
t ->
pos2:Base.int ->
len:Base.int ->
Base.int
memcmp t1 ~pos1 t2 ~pos2 ~len
is like compare t1 t2
except performs the comparison on the subregions of t1
and t2
defined by pos1
, pos2
, and len
.
val memcmp_bytes :
t ->
pos1:Base.int ->
Base.Bytes.t ->
pos2:Base.int ->
len:Base.int ->
Base.int
memcmp_bytes
, for efficient memcmp
between Bigstring
and Bytes
data.
Search
val find :
?pos:Base.int ->
?len:Base.int ->
Base.char ->
t ->
Base.int Base.option
find ?pos ?len char t
returns Some i
for the smallest i >= pos
such that t.{i} = char
, or None
if there is no such i
.
val unsafe_find : t -> Base.char -> pos:Base.int -> len:Base.int -> Base.int
Same as find
, but does no bounds checking, and returns a negative value instead of None
if char
is not found.
val memmem :
haystack:t ->
needle:t ->
?haystack_pos:Base.int ->
?haystack_len:Base.int ->
?needle_pos:Base.int ->
?needle_len:Base.int ->
Base.unit ->
Base.int Base.option
Search for the position of (a substring of) needle
in (a substring of) haystack
.
val unsafe_memmem :
haystack:t ->
needle:t ->
haystack_pos:Base.int ->
haystack_len:Base.int ->
needle_pos:Base.int ->
needle_len:Base.int ->
Base.int
As unsafe_find
for memmem
.
Accessors for parsing binary values, analogous to Binary_packing
These are in Bigstring
rather than a separate module because:
1. Existing Binary_packing
requires copies and does not work with bigstring
s. 2. The accessors rely on the implementation of bigstring
, and hence should change should the implementation of bigstring
move away from Bigarray
. 3. Bigstring
already has some external C functions, so it didn't require many changes to the jbuild
^_^.
In a departure from Binary_packing
, the naming conventions are chosen to be close to C99 stdint types, as it's a more standard description and it is somewhat useful in making compact macros for the implementations. The accessor names contain endian-ness to allow for branch-free implementations
<accessor> ::= <unsafe><operation><type><endian> <unsafe> ::= unsafe_ | '' <operation> ::= get_ | set_ <type> ::= int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 <endian> ::= _le | _be | ''
The unsafe_
prefix indicates that these functions do no bounds checking and silently truncate out-of-range numeric arguments.
val get_int8 : t -> pos:Base.int -> Base.int
val set_int8_exn : t -> pos:Base.int -> Base.int -> Base.unit
val get_uint8 : t -> pos:Base.int -> Base.int
val set_uint8_exn : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_get_int8 : t -> pos:Base.int -> Base.int
val unsafe_set_int8 : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_get_uint8 : t -> pos:Base.int -> Base.int
val unsafe_set_uint8 : t -> pos:Base.int -> Base.int -> Base.unit
16-bit methods
val get_int16_le : t -> pos:Base.int -> Base.int
val get_int16_be : t -> pos:Base.int -> Base.int
val set_int16_le_exn : t -> pos:Base.int -> Base.int -> Base.unit
val set_int16_be_exn : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_get_int16_le : t -> pos:Base.int -> Base.int
val unsafe_get_int16_be : t -> pos:Base.int -> Base.int
val unsafe_set_int16_le : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_set_int16_be : t -> pos:Base.int -> Base.int -> Base.unit
val get_uint16_le : t -> pos:Base.int -> Base.int
val get_uint16_be : t -> pos:Base.int -> Base.int
val set_uint16_le_exn : t -> pos:Base.int -> Base.int -> Base.unit
val set_uint16_be_exn : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_get_uint16_le : t -> pos:Base.int -> Base.int
val unsafe_get_uint16_be : t -> pos:Base.int -> Base.int
val unsafe_set_uint16_le : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_set_uint16_be : t -> pos:Base.int -> Base.int -> Base.unit
32-bit methods
val get_int32_le : t -> pos:Base.int -> Base.int
val get_int32_be : t -> pos:Base.int -> Base.int
val set_int32_le_exn : t -> pos:Base.int -> Base.int -> Base.unit
val set_int32_be_exn : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_get_int32_le : t -> pos:Base.int -> Base.int
val unsafe_get_int32_be : t -> pos:Base.int -> Base.int
val unsafe_set_int32_le : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_set_int32_be : t -> pos:Base.int -> Base.int -> Base.unit
val get_uint32_le : t -> pos:Base.int -> Base.int
val get_uint32_be : t -> pos:Base.int -> Base.int
val set_uint32_le_exn : t -> pos:Base.int -> Base.int -> Base.unit
val set_uint32_be_exn : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_get_uint32_le : t -> pos:Base.int -> Base.int
val unsafe_get_uint32_be : t -> pos:Base.int -> Base.int
val unsafe_set_uint32_le : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_set_uint32_be : t -> pos:Base.int -> Base.int -> Base.unit
Similar to the usage in binary_packing, the below methods are treating the value being read (or written), as an ocaml immediate integer, as such it is actually 63 bits. If the user is confident that the range of values used in practice will not require 64-bit precision (i.e. Less than Max_Long), then we can avoid allocation and use an immediate. If the user is wrong, an exception will be thrown (for get).
64-bit signed values
val get_int64_le_exn : t -> pos:Base.int -> Base.int
val get_int64_be_exn : t -> pos:Base.int -> Base.int
val get_int64_le_trunc : t -> pos:Base.int -> Base.int
val get_int64_be_trunc : t -> pos:Base.int -> Base.int
val set_int64_le : t -> pos:Base.int -> Base.int -> Base.unit
val set_int64_be : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_get_int64_le_exn : t -> pos:Base.int -> Base.int
val unsafe_get_int64_be_exn : t -> pos:Base.int -> Base.int
val unsafe_get_int64_le_trunc : t -> pos:Base.int -> Base.int
val unsafe_get_int64_be_trunc : t -> pos:Base.int -> Base.int
val unsafe_set_int64_le : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_set_int64_be : t -> pos:Base.int -> Base.int -> Base.unit
64-bit unsigned values
val get_uint64_be_exn : t -> pos:Base.int -> Base.int
val get_uint64_le_exn : t -> pos:Base.int -> Base.int
val set_uint64_le_exn : t -> pos:Base.int -> Base.int -> Base.unit
val set_uint64_be_exn : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_get_uint64_be_exn : t -> pos:Base.int -> Base.int
val unsafe_get_uint64_le_exn : t -> pos:Base.int -> Base.int
val unsafe_set_uint64_le : t -> pos:Base.int -> Base.int -> Base.unit
val unsafe_set_uint64_be : t -> pos:Base.int -> Base.int -> Base.unit
32-bit methods with full precision
val get_int32_t_le : t -> pos:Base.int -> Base.Int32.t
val get_int32_t_be : t -> pos:Base.int -> Base.Int32.t
val set_int32_t_le : t -> pos:Base.int -> Base.Int32.t -> Base.unit
val set_int32_t_be : t -> pos:Base.int -> Base.Int32.t -> Base.unit
val unsafe_get_int32_t_le : t -> pos:Base.int -> Base.Int32.t
val unsafe_get_int32_t_be : t -> pos:Base.int -> Base.Int32.t
val unsafe_set_int32_t_le : t -> pos:Base.int -> Base.Int32.t -> Base.unit
val unsafe_set_int32_t_be : t -> pos:Base.int -> Base.Int32.t -> Base.unit
64-bit methods with full precision
val get_int64_t_le : t -> pos:Base.int -> Base.Int64.t
val get_int64_t_be : t -> pos:Base.int -> Base.Int64.t
val set_int64_t_le : t -> pos:Base.int -> Base.Int64.t -> Base.unit
val set_int64_t_be : t -> pos:Base.int -> Base.Int64.t -> Base.unit
val unsafe_get_int64_t_le : t -> pos:Base.int -> Base.Int64.t
val unsafe_get_int64_t_be : t -> pos:Base.int -> Base.Int64.t
val unsafe_set_int64_t_le : t -> pos:Base.int -> Base.Int64.t -> Base.unit
val unsafe_set_int64_t_be : t -> pos:Base.int -> Base.Int64.t -> Base.unit