package ecaml

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

An Emacs symbol, i.e., an Emacs value that satisfies Value.is_symbol.

(Info-goto-node "(elisp)Symbols")

include module type of struct include Ecaml_value.Symbol end
include Ecaml_value.Value.Subtype
type t = private Ecaml_value.Value.t

We expose private value for free identity conversions when the value is nested in some covariant type, e.g. (symbols : Symbol.t list :> Value.t list) rather than List.map symbols ~f:Symbol.to_value.

val sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
val eq : t -> t -> bool

eq t1 t2 = Value.eq (to_value t1) (to_value t2), i.e. eq checks whether the Emacs values underlying t1 and t2 are physically equal. This is different than phys_equal t1 t2, because we don't always wrap eq Emacs values in phys_equal OCaml values. I.e. phys_equal t1 t2 implies eq t1 t2, but not the converse.

val is_in_subtype : Ecaml_value.Value.t -> bool
val of_value_exn : Ecaml_value__.Value0.t -> t
val to_value : t -> Ecaml_value__.Value0.t
include Core_kernel.Equal.S with type t := t
val equal : t Base.Equal.equal
include Ecaml_value.Value.Funcall with type t := t
val funcall0 : ?should_profile:bool -> t -> Ecaml_value.Value.t
val funcall1 : ?should_profile:bool -> t -> Ecaml_value.Value.t -> Ecaml_value.Value.t
val funcall2 : ?should_profile:bool -> t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> Ecaml_value.Value.t
val funcall3 : ?should_profile:bool -> t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> Ecaml_value.Value.t
val funcallN : ?should_profile:bool -> t -> Ecaml_value.Value.t list -> Ecaml_value.Value.t
val funcallN_array : ?should_profile:bool -> t -> Ecaml_value.Value.t array -> Ecaml_value.Value.t
val funcall0_i : ?should_profile:bool -> t -> unit
val funcall1_i : ?should_profile:bool -> t -> Ecaml_value.Value.t -> unit
val funcall2_i : ?should_profile:bool -> t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> unit
val funcall3_i : ?should_profile:bool -> t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> unit
val funcall4_i : ?should_profile:bool -> t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> unit
val funcall5_i : ?should_profile:bool -> t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> unit
val funcallN_i : ?should_profile:bool -> t -> Ecaml_value.Value.t list -> unit
val funcallN_array_i : ?should_profile:bool -> t -> Ecaml_value.Value.t array -> unit
val funcall_int_int_value_value_unit : ?should_profile:bool -> t -> int -> int -> Ecaml_value.Value.t -> Ecaml_value.Value.t -> unit
val funcall_int_int_value_unit : ?should_profile:bool -> t -> int -> int -> Ecaml_value.Value.t -> unit
val intern : string -> t

Accessors

val name : t -> string

(describe-function 'symbol-name)

val function_exn : t -> Ecaml_value.Value.t

(describe-function 'symbol-function)

val function_is_defined : t -> bool

(describe-function 'fboundp)

val compare_name : t -> t -> int
val create : name:string -> t

(describe-function 'make-symbol).

val gensym : ?prefix:string -> unit -> t

(describe-function 'gensym).

val set_function : t -> Ecaml_value.Value.t -> unit

(describe-function 'fset).

type symbol = t
module Property : sig ... end
module type Subtype = sig ... end
module Make_subtype (Arg : sig ... end) : Subtype with type t := Arg.t
module Compare_name : sig ... end