package ecaml

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

A "position" is the index of a character in the text of a buffer. More precisely, a position identifies the place between two characters (or before the first character, or after the last character), so we can speak of the character before or after a given position. However, we often speak of the character "at" a position, meaning the character after that position.

Positions are usually represented as integers starting from 1, but can also be represented as "markers"--special objects that relocate automatically when text is inserted or deleted so they stay with the surrounding characters.

(Info-goto-node "(elisp)Positions").

include Ecaml_value.Value.Subtype
type t = private Ecaml_value.Value.t

We expose private value for free identity conversions when the value is nested in some covariant type, e.g. (symbols : Symbol.t list :> Value.t list) rather than List.map symbols ~f:Symbol.to_value.

val sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
val eq : t -> t -> bool

eq t1 t2 = Value.eq (to_value t1) (to_value t2), i.e. eq checks whether the Emacs values underlying t1 and t2 are physically equal. This is different than phys_equal t1 t2, because we don't always wrap eq Emacs values in phys_equal OCaml values. I.e. phys_equal t1 t2 implies eq t1 t2, but not the converse.

val is_in_subtype : Ecaml_value.Value.t -> bool
val of_value_exn : Ecaml_value__.Value0.t -> t
val to_value : t -> Ecaml_value__.Value0.t
include Core_kernel.Comparable.S_plain with type t := t
include Base.Comparable.S with type t := t
include Base.Comparisons.S with type t := t
include Base.Comparisons.Infix with type t := t
val (>=) : t -> t -> bool
val (<=) : t -> t -> bool
val (=) : t -> t -> bool
val (>) : t -> t -> bool
val (<) : t -> t -> bool
val (<>) : t -> t -> bool
val equal : t -> t -> bool
val compare : t -> t -> int

compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.

val min : t -> t -> t
val max : t -> t -> t
val ascending : t -> t -> int

ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.

val descending : t -> t -> int
val between : t -> low:t -> high:t -> bool

between t ~low ~high means low <= t <= high

val clamp_exn : t -> min:t -> max:t -> t

clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.

Raises if not (min <= max).

val clamp : t -> min:t -> max:t -> t Base.Or_error.t
include Base.Comparator.S with type t := t
type comparator_witness
val validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.check
val of_int_exn : int -> t
val to_int : t -> int
val to_byte_position : t -> int

(describe-function 'position-bytes). (Info-goto-node "(elisp)Text Representations")

val of_byte_position : int -> t

(describe-function 'byte-to-position). (Info-goto-node "(elisp)Text Representations")

val add : t -> int -> t
val sub : t -> int -> t
val diff : t -> t -> int
OCaml

Innovation. Community. Security.