package ocaml_openapi_generator

  1. Overview
  2. Docs
include module type of Core.Int
val globalize : int -> int
include Sexplib0.Sexpable.S with type t := int
val t_sexp_grammar : int Sexplib0.Sexp_grammar.t
include Base.Floatable.S with type t := int
val of_float : float -> int
val to_float : int -> float
include Base.Intable.S with type t := int
val of_int_exn : int -> int
val to_int_exn : int -> int
include Base.Identifiable.S with type t := int with type comparator_witness = Base.Int.comparator_witness
include Sexplib0.Sexpable.S with type t := int
include Base.Stringable.S with type t := int
include Base.Comparable.S with type t := int with type comparator_witness = Base.Int.comparator_witness
include Base.Comparisons.S with type t := int
include Base.Comparisons.Infix with type t := int
include Base.Comparator.S with type t := int with type comparator_witness = Base.Int.comparator_witness
type comparator_witness = Base.Int.comparator_witness
include Base.Pretty_printer.S with type t := int
include Base.Comparable.With_zero with type t := int
val is_positive : int -> bool
val is_non_negative : int -> bool
val is_negative : int -> bool
val is_non_positive : int -> bool
val sign : int -> Base.Sign.t

Returns Neg, Zero, or Pos in a way consistent with the above functions.

val compare__local : int -> int -> int
val equal__local : int -> int -> bool
include Base.Invariant.S with type t := int
val invariant : int -> unit
val of_string_opt : string -> int option
val to_string_hum : ?delimiter:char -> int -> string

delimiter is an underscore by default.

Infix operators and constants

val one : int
val minus_one : int

Negation

There are two pairs of integer division and remainder functions, /% and %, and / and rem. They both satisfy the same equation relating the quotient and the remainder:

x = (x /% y) * y + (x % y);
x = (x /  y) * y + (rem x y);

The functions return the same values if x and y are positive. They all raise if y = 0.

The functions differ if x < 0 or y < 0.

If y < 0, then % and /% raise, whereas / and rem do not.

x % y always returns a value between 0 and y - 1, even when x < 0. On the other hand, rem x y returns a negative value if and only if x < 0; that value satisfies abs (rem x y) <= abs y - 1.

val rem : int -> int -> int

Other common functions

round rounds an int to a multiple of a given to_multiple_of argument, according to a direction dir, with default dir being `Nearest. round will raise if to_multiple_of <= 0. If the result overflows (too far positive or too far negative), round returns an incorrect result.

       | `Down    | rounds toward Int.neg_infinity                          |
       | `Up      | rounds toward Int.infinity                              |
       | `Nearest | rounds to the nearest multiple, or `Up in case of a tie |
       | `Zero    | rounds toward zero                                      |

Here are some examples for round ~to_multiple_of:10 for each direction:

       | `Down    | {10 .. 19} --> 10 | { 0 ... 9} --> 0 | {-10 ... -1} --> -10 |
       | `Up      | { 1 .. 10} --> 10 | {-9 ... 0} --> 0 | {-19 .. -10} --> -10 |
       | `Zero    | {10 .. 19} --> 10 | {-9 ... 9} --> 0 | {-19 .. -10} --> -10 |
       | `Nearest | { 5 .. 14} --> 10 | {-5 ... 4} --> 0 | {-15 ... -6} --> -10 |

For convenience and performance, there are variants of round with dir hard-coded. If you are writing performance-critical code you should use these.

val round : ?dir:[ `Zero | `Nearest | `Up | `Down ] -> int -> to_multiple_of:int -> int
val round_towards_zero : int -> to_multiple_of:int -> int
val round_down : int -> to_multiple_of:int -> int
val round_up : int -> to_multiple_of:int -> int
val round_nearest : int -> to_multiple_of:int -> int

Successor and predecessor functions

val succ : int -> int
val pred : int -> int

Exponentiation

val pow : int -> int -> int

pow base exponent returns base raised to the power of exponent. It is OK if base <= 0. pow raises if exponent < 0, or an integer overflow would occur.

Bit-wise logical operations

val bit_and : int -> int -> int

These are identical to land, lor, etc. except they're not infix and have different names.

val bit_or : int -> int -> int
val bit_xor : int -> int -> int
val bit_not : int -> int
val popcount : int -> int

Returns the number of 1 bits in the binary representation of the input.

Bit-shifting operations

The results are unspecified for negative shifts and shifts >= num_bits.

val shift_left : int -> int -> int

Shifts left, filling in with zeroes.

val shift_right : int -> int -> int

Shifts right, preserving the sign of the input.

Increment and decrement functions for integer references

val decr : int ref -> unit
val incr : int ref -> unit
val of_int32_exn : int32 -> int
val to_int32_exn : int -> int32
val of_int64_exn : int64 -> int
val to_int64 : int -> int64
val of_nativeint_exn : nativeint -> int
val to_nativeint_exn : int -> nativeint
val of_float_unchecked : float -> int

of_float_unchecked truncates the given floating point number to an integer, rounding towards zero. The result is unspecified if the argument is nan or falls outside the range of representable integers.

val num_bits : int

The number of bits available in this integer type. Note that the integer representations are signed.

val max_value : int

The largest representable integer.

val min_value : int

The smallest representable integer.

val shift_right_logical : int -> int -> int

Shifts right, filling in with zeroes, which will not preserve the sign of the input.

val ceil_pow2 : int -> int

ceil_pow2 x returns the smallest power of 2 that is greater than or equal to x. The implementation may only be called for x > 0. Example: ceil_pow2 17 = 32

val floor_pow2 : int -> int

floor_pow2 x returns the largest power of 2 that is less than or equal to x. The implementation may only be called for x > 0. Example: floor_pow2 17 = 16

val ceil_log2 : int -> int

ceil_log2 x returns the ceiling of log-base-2 of x, and raises if x <= 0.

val floor_log2 : int -> int

floor_log2 x returns the floor of log-base-2 of x, and raises if x <= 0.

val is_pow2 : int -> bool

is_pow2 x returns true iff x is a power of 2. is_pow2 raises if x <= 0.

val clz : int -> int

Returns the number of leading zeros in the binary representation of the input, as an integer between 0 and one less than num_bits.

The results are unspecified for t = 0.

val ctz : int -> int

Returns the number of trailing zeros in the binary representation of the input, as an integer between 0 and one less than num_bits.

The results are unspecified for t = 0.

module O = Core.Int.O
include module type of O
val (+) : int -> int -> int
val (-) : int -> int -> int
val (*) : int -> int -> int
val (/) : int -> int -> int
val (~-) : int -> int
val (**) : int -> int -> int
val (land) : int -> int -> int
val (lor) : int -> int -> int
val (lxor) : int -> int -> int
val lnot : int -> int
val abs : int -> int
val neg : int -> int
val zero : int
val (%) : int -> int -> int
val (/%) : int -> int -> int
val (//) : int -> int -> float
val (lsl) : int -> int -> int
val (asr) : int -> int -> int
val (lsr) : int -> int -> int
val max_value_30_bits : int

max_value_30_bits = 2^30 - 1. It is useful for writing tests that work on both 64-bit and 32-bit platforms.

Conversion functions

val of_int : int -> int
val to_int : int -> int
val of_int32 : int32 -> int option
val to_int32 : int -> int32 option
val of_int64 : int64 -> int option
val of_nativeint : nativeint -> int option
val to_nativeint : int -> nativeint

Truncating conversions

These functions return the least-significant bits of the input. In cases where optional conversions return Some x, truncating conversions return x.

val to_int32_trunc : int -> int32
val of_int32_trunc : int32 -> int
val of_int64_trunc : int64 -> int
val of_nativeint_trunc : nativeint -> int

Byte swap operations

Byte swap operations reverse the order of bytes in an integer. For example, Int32.bswap32 reorders the bottom 32 bits (or 4 bytes), turning 0x1122_3344 to 0x4433_2211. Byte swap functions exposed by Base use OCaml primitives to generate assembly instructions to perform the relevant byte swaps.

For a more extensive list of byteswap functions, see Int32 and Int64.

val bswap16 : int -> int

Byte swaps bottom 16 bits (2 bytes). The values of the remaining bytes are undefined.

Note that int is already stable by itself, since as a primitive type it is an integral part of the sexp / bin_io protocol. Int.Stable exists only to introduce Int.Stable.Set and Int.Stable.Map, and provide interface uniformity with other stable types.

include Core.Int_intf.Extension_with_stable with type t := {t}1 and type comparator_witness := comparator_witness
include Core.Int_intf.Extension with type t := {t}1 with type comparator_witness := comparator_witness
include Bin_prot.Binable.S with type t := {t}1
include Bin_prot.Binable.S_only_functions with type t := {t}1
include Typerep_lib.Typerepable.S with type t := {t}1
val typerep_of_t : {t}1 Typerep_lib.Std_internal.Typerep.t
val typename_of_t : {t}1 Typerep_lib.Typename.t
include Core.Int_intf.Binaryable with type t := {t}1
module Binary = Core.Int.Binary
include Base.Int.Binaryable with type t := {t}1 and module Binary := Binary
include Core.Int_intf.Hexable with type t := {t}1
module Hex = Core.Int.Hex
include Base.Int.Hexable with type t := {t}1 and module Hex := Hex
include Core.Identifiable.S with type t := {t}1 with type comparator_witness := comparator_witness
include Bin_prot.Binable.S with type t := {t}1
include Bin_prot.Binable.S_only_functions with type t := {t}1
include Ppx_hash_lib.Hashable.S with type t := {t}1
include Sexplib0.Sexpable.S with type t := {t}1
val t_of_sexp : Sexplib0.Sexp.t -> {t}1
include Ppx_compare_lib.Comparable.S with type t := {t}1
include Ppx_hash_lib.Hashable.S with type t := {t}1
val sexp_of_t : {t}1 -> Sexplib0.Sexp.t
include Base.Stringable.S with type t := {t}1
val of_string : string -> {t}1
val to_string : {t}1 -> string
include Base.Pretty_printer.S with type t := {t}1
val pp : Base.Formatter.t -> {t}1 -> unit
include Core.Comparable.S_binable with type t := {t}1 with type comparator_witness := comparator_witness
include Base.Comparable.S with type t := {t}1 with type comparator_witness := comparator_witness
include Base.Comparisons.S with type t := {t}1
include Base.Comparisons.Infix with type t := {t}1
val (>=) : {t}1 -> {t}1 -> bool
val (<=) : {t}1 -> {t}1 -> bool
val (=) : {t}1 -> {t}1 -> bool
val (>) : {t}1 -> {t}1 -> bool
val (<) : {t}1 -> {t}1 -> bool
val (<>) : {t}1 -> {t}1 -> bool
val equal : {t}1 -> {t}1 -> bool
val compare : {t}1 -> {t}1 -> int

compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.

val min : {t}1 -> {t}1 -> {t}1
val max : {t}1 -> {t}1 -> {t}1
val ascending : {t}1 -> {t}1 -> int

ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.

val descending : {t}1 -> {t}1 -> int
val between : {t}1 -> low:{t}1 -> high:{t}1 -> bool

between t ~low ~high means low <= t <= high

val clamp_exn : {t}1 -> min:{t}1 -> max:{t}1 -> {t}1

clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.

Raises if not (min <= max).

val clamp : {t}1 -> min:{t}1 -> max:{t}1 -> {t}1 Base.Or_error.t
include Base.Comparator.S with type t := {t}1 with type comparator_witness := comparator_witness
module Replace_polymorphic_compare = Core.Int.Replace_polymorphic_compare
include Core.Comparator.S with type t := {t}1 with type comparator_witness := comparator_witness
module Map = Core.Int.Map
module Set = Core.Int.Set
include Core.Hashable.S_binable with type t := {t}1
include Ppx_hash_lib.Hashable.S with type t := {t}1
val hash_fold_t : Base.Hash.state -> {t}1 -> Base.Hash.state
val hash : {t}1 -> Base.Hash.hash_value
val hashable : {t}1 Base.Hashable.t
module Table = Core.Int.Table
module Hash_set = Core.Int.Hash_set
module Hash_queue = Core.Int.Hash_queue
include Core.Comparable.Validate_with_zero with type t := {t}1
val validate_lbound : min:{t}1 Core.Maybe_bound.t -> {t}1 Validate.check
val validate_ubound : max:{t}1 Core.Maybe_bound.t -> {t}1 Validate.check
val validate_bound : min:{t}1 Core.Maybe_bound.t -> max:{t}1 Core.Maybe_bound.t -> {t}1 Validate.check
val validate_positive : {t}1 Validate.check
val validate_non_negative : {t}1 Validate.check
val validate_negative : {t}1 Validate.check
val validate_non_positive : {t}1 Validate.check
include Core.Quickcheckable.S_int with type t := {t}1
include Core.Quickcheck_intf.S_range with type t := {t}1
include Core.Quickcheck_intf.S with type t := {t}1
val quickcheck_generator : {t}1 Base_quickcheck.Generator.t
val quickcheck_observer : {t}1 Base_quickcheck.Observer.t
val quickcheck_shrinker : {t}1 Base_quickcheck.Shrinker.t
val gen_incl : {t}1 -> {t}1 -> {t}1 Base_quickcheck.Generator.t

gen_incl lower_bound upper_bound produces values between lower_bound and upper_bound, inclusive. It uses an ad hoc distribution that stresses boundary conditions more often than a uniform distribution, while still able to produce any value in the range. Raises if lower_bound > upper_bound.

val gen_uniform_incl : {t}1 -> {t}1 -> {t}1 Base_quickcheck.Generator.t

gen_uniform_incl lower_bound upper_bound produces a generator for values uniformly distributed between lower_bound and upper_bound, inclusive. Raises if lower_bound > upper_bound.

val gen_log_uniform_incl : {t}1 -> {t}1 -> {t}1 Base_quickcheck.Generator.t

gen_log_uniform_incl lower_bound upper_bound produces a generator for values between lower_bound and upper_bound, inclusive, where the number of bits used to represent the value is uniformly distributed. Raises if (lower_bound < 0) || (lower_bound > upper_bound).

val gen_log_incl : {t}1 -> {t}1 -> {t}1 Base_quickcheck.Generator.t

gen_log_incl lower_bound upper_bound is like gen_log_uniform_incl, but weighted slightly more in favor of generating lower_bound and upper_bound specifically.

module Stable = Core.Int.Stable
include sig ... end
type nonrec t = {t}1
include Bin_prot.Binable.S_local with type t := t
include Bin_prot.Binable.S_local_only_functions with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (int -> t) Bin_prot.Read.reader

This function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.

val bin_size_t__local : t Bin_prot.Size.sizer_local
val bin_write_t__local : t Bin_prot.Write.writer_local
val bin_shape_t : Bin_prot.Shape.t
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_reader_t : t Bin_prot.Type_class.reader
val jsonaf_of_t : t -> Jsonaf.t
val t_of_jsonaf : Jsonaf.t -> t
OCaml

Innovation. Community. Security.