Library
Module
Module type
Parameter
Class
Class type
type 'a t = Random.State.t -> 'a
A random generator for values of type 'a.
type 'a sized = int -> Random.State.t -> 'a
Random generator with a size bound.
val return : 'a -> 'a t
Create a constant generator.
Monadic bind for writing dependent generators. First generates an 'a
and then passes it to the given function, to generate a 'b
.
Infix operator for composing a function generator and an argument generator into a result generator.
map f g
transforms a generator g
by applying f
to each generated element.
map2 f g1 g2
transforms two generators g1
and g2
by applying f
to each pair of generated elements.
map3 f g1 g2 g3
transforms three generators g1
, g2
, and g3
by applying f
to each triple of generated elements.
map_keep_input f g
transforms a generator g
by applying f
to each generated element. Returns both the generated element from g
and the output from f
.
val oneofl : 'a list -> 'a t
Constructs a generator that selects among a given list of values.
val oneofa : 'a array -> 'a t
Constructs a generator that selects among a given array of values.
Constructs a generator that selects among a given list of generators. Each of the given generators are chosen based on a positive integer weight.
val frequencyl : (int * 'a) list -> 'a t
Constructs a generator that selects among a given list of values. Each of the given values are chosen based on a positive integer weight.
val frequencya : (int * 'a) array -> 'a t
Constructs a generator that selects among a given array of values. Each of the array entries are chosen based on a positive integer weight.
val shuffle_a : 'a array -> unit t
Shuffles the array in place.
val shuffle_l : 'a list -> 'a list t
Creates a generator of shuffled lists.
val unit : unit t
The unit generator.
val bool : bool t
The boolean generator.
val float : float t
Generates floating point numbers.
val pfloat : float t
Generates positive floating point numbers (0. included).
val nfloat : float t
Generates negative floating point numbers. (-0. included)
val nat : int t
Generates small natural numbers.
val big_nat : int t
Generates natural numbers, possibly large.
val neg_int : int t
Generates non-strictly negative integers (0 included).
val pint : int t
Generates non-strictly positive integers uniformly (0 included).
val int : int t
Generates integers uniformly.
val small_nat : int t
Small integers (< 100)
val small_int : int t
Small UNSIGNED integers, for retrocompatibility.
val int_bound : int -> int t
Uniform integer generator producing integers within 0... bound
.
val int_range : int -> int -> int t
Uniform integer generator producing integers within low,high
.
graft_corners gen l ()
makes a new generator that enumerates the corner cases in l
and then behaves like g
.
val ui32 : int32 t
Generates (unsigned) int32
values.
val ui64 : int64 t
Generates (unsigned) int64
values.
Builds a list generator from an element generator. List size is generated by nat
.
Builds a list generator from a (non-negative) size generator and an element generator.
list_repeat i g
builds a list generator from exactly i
elements generated by g
.
Builds an array generator from an element generator. Array size is generated by nat
.
Builds an array generator from a (non-negative) size generator and an element generator.
array_repeat i g
builds an array generator from exactly i
elements generated by g
.
val char : char t
Generates characters upto character code 255.
val printable : char t
Generates printable characters.
val numeral : char t
Generates numeral characters.
Builds a string generator from a (non-negative) size generator. Accepts an optional character generator (the default is char
).
Creates a generator from a size-bounded generator by first generating a size using nat
and passing the result to the size-bounded generator.
Creates a generator from a size-bounded generator by first generating a size using the integer generator and passing the result to the size-bounded generator.
Parametrized fixpoint combinator for generating recursive values.
The fixpoint is parametrized over an arbitrary state ('a), and the fixpoint computation may change the value of this state in the recursive calls.
In particular, this can be used for size-bounded generators ('a is int). The passed size-parameter should decrease to ensure termination.
Example:
type tree = Leaf of int | Node of tree * tree
let leaf x = Leaf x
let node x y = Node (x,y)
let g = QCheck.Gen.(sized @@ fix
(fun self n -> match n with
| 0 -> map leaf nat
| n ->
frequency
[1, map leaf nat;
2, map2 node (self (n/2)) (self (n/2))]
))
val generate : ?rand:Random.State.t -> n:int -> 'a t -> 'a list
generate ~n g
generates n
instances of g
.
val generate1 : ?rand:Random.State.t -> 'a t -> 'a
generate1 g
generates one instance of g
.