package coq

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val xlra_Q : unit Proofview.tactic -> unit Proofview.tactic
val xlra_R : unit Proofview.tactic -> unit Proofview.tactic
val xlia : unit Proofview.tactic -> unit Proofview.tactic
val xnra_Q : unit Proofview.tactic -> unit Proofview.tactic
val xnra_R : unit Proofview.tactic -> unit Proofview.tactic
val xnia : unit Proofview.tactic -> unit Proofview.tactic
val xsos_Q : unit Proofview.tactic -> unit Proofview.tactic
val xsos_R : unit Proofview.tactic -> unit Proofview.tactic
val xsos_Z : unit Proofview.tactic -> unit Proofview.tactic
val xpsatz_Q : int -> unit Proofview.tactic -> unit Proofview.tactic
val xpsatz_R : int -> unit Proofview.tactic -> unit Proofview.tactic
val xpsatz_Z : int -> unit Proofview.tactic -> unit Proofview.tactic
val print_lia_profile : unit -> unit
Use Micromega independently from micromega parser.
val wlra_Q : Names.Id.t -> EConstr.t -> unit Proofview.tactic

wlra_Q id ff takes a formula ff : BFormula (Formula Q) isProp generates a witness and poses it as id : seq (Psatz Q)

val wlia : Names.Id.t -> EConstr.t -> unit Proofview.tactic

wlia id ff takes a formula ff : BFormula (Formula Z) isProp generates a witness and poses it as id : seq ZMicromega.ZArithProof

val wnra_Q : Names.Id.t -> EConstr.t -> unit Proofview.tactic

wnra_Q id ff takes a formula ff : BFormula (Formula Q) isProp generates a witness and poses it as id : seq (Psatz Q)

val wnia : Names.Id.t -> EConstr.t -> unit Proofview.tactic

wnia id ff takes a formula ff : BFormula (Formula Z) isProp generates a witness and poses it as id : seq ZMicromega.ZArithProof

val wsos_Q : Names.Id.t -> EConstr.t -> unit Proofview.tactic

wsos_Q id ff takes a formula ff : BFormula (Formula Q) isProp generates a witness and poses it as id : seq (Psatz Q)

val wsos_Z : Names.Id.t -> EConstr.t -> unit Proofview.tactic

wsos_Z id ff takes a formula ff : BFormula (Formula Z) isProp generates a witness and poses it as id : seq ZMicromega.ZArithProof

val wpsatz_Q : int -> Names.Id.t -> EConstr.t -> unit Proofview.tactic

wpsatz_Q n id ff takes a formula ff : BFormula (Formula Q) isProp generates a witness and poses it as id : seq (Psatz Q)

val wpsatz_Z : int -> Names.Id.t -> EConstr.t -> unit Proofview.tactic

wpsatz_Z n id ff takes a formula ff : BFormula (Formula Z) isProp generates a witness and poses it as id : seq ZMicromega.ZArithProof

Use Micromega independently from tactics.
val dump_proof_term : Micromega.zArithProof -> EConstr.t

dump_proof_term generates the Coq representation of a Micromega proof witness

OCaml

Innovation. Community. Security.