package coq-lsp

  1. Overview
  2. Docs
Language Server Protocol native server for Coq

Install

Dune Dependency

Authors

Maintainers

Sources

coq-lsp-0.2.0.8.20.tbz
sha256=bcb9a4c3219aed47ffbfd7c8ea7a2f374140d8cdb76079927548f49c7e3576a9
sha512=945c0010b4952e41055cb7e35175d400e5c126dc340dd1c0ab53321605cd0d9539af6693a794cb81a9dec0385d0880d4417dae923b6d19c9b62913766a185d8c

Description

Language Server Protocol native server for Coq

Published: 10 Sep 2024

README

Coq LSP

coq-lsp is a Language Server and Visual Studio Code extension for the Coq Proof Assistant. Experimental support for Vim and Neovim is also available in their own projects.

Quick Install:

  • 🐧 Linux / 🍎 macOs:

$ opam install coq-lsp && code --install-extension ejgallego.coq-lsp

Key features of coq-lsp are: continuous and incremental document checking, advanced error recovery, hybrid Coq/markdown document support, multiple workspace support, positional goals and information panel, performance data, extensible command-line compiler, plugin system, and more.

See the coq-lsp User Manual for more information.

coq-lsp aims to provide a seamless, modern interactive theorem proving experience, as well as to serve as a maintainable platform for research and UI integration with other projects.

coq-lsp is built on top of Flèche, a new document checking engine for formal documents, designed from our experience in previous, projects. Flèche is specifically optimized for interactive use, SerAPI-like tooling integration, and web native usage, providing quite a few extra features from vanilla Coq.

coq-lsp supports 🐧 Linux, 🍎 macOS, 🪟 Windows , and ☕ JavaScript (Node/Browser)

Table of Contents

🎁 Features

⏩ Incremental Compilation and Continuous Document Checking

Edit your file, and coq-lsp will try to re-check only what is necessary, continuously. No more dreaded Ctrl-C Ctrl-N! Rechecking tries to be smart, and will ignore whitespace changes.

Incremental checking

In a future release, coq-lsp will save its document cache to disk, so you can restart your proof session where you left it at the last time.

Incremental support is undergoing refinement, if coq-lsp rechecks when it should not, please file a bug!

👁 On-demand, Follow The Viewport Document Checking

coq-lsp does also support on-demand checking. Two modes are available: follow the cursor, or follow the viewport; the modes can be toggled using the Language Status Item in Code's bottom right corner:

On-demand checking

🧠 Smart, Cache-Aware Error Recovery

coq-lsp won't stop checking on errors, but supports (and encourages) working with proof documents that are only partially working. Error recovery integrates with the incremental cache, and does recognize proof structure.

You can edit without fear inside a Proof. ... Qed., the rest of the document won't be rechecked; you can leave bullets and focused goals unfinished, and coq-lsp will automatically admit them for you.

If a lemma is not completed, coq-lsp will admit it automatically. No more Admitted / Qed churn!

Smart error recovery

🥅 Whole-Document Goal Display

coq-lsp will follow the cursor movement and show underlying goals and messages; as well as information about what goals you have given up, shelves, pending obligations, open bullets and their goals.

Whole-Document Goal Display

Goal display behavior is configurable in case you'd like to trigger goal display more conservatively.

🗒️ Markdown and LaTeX Support

Open a markdown file with a .mv extension, or a TeX file ending in .lv or .v.tex, then coq-lsp will check the code parts that are enclosed into coq language blocks! coq-lsp places human-friendly documents at the core of its design ideas.

Coq + Markdown Editing

Moreover, you can use the usual Visual Studio Code Markdown or LaTeX preview facilities to render your markdown documents nicely!

👥 Document Outline

coq-lsp supports document outline and code folding, allowing you to jump directly to definitions in the document. Many of the Coq vernacular commands like Definition, Theorem, Lemma, etc. will be recognized as document symbols which you can navigate to or see the outline of.

Document Outline Demo Document Symbols

🐝 Document Hover

Hovering over a Coq identifier will show its type.

Types on Hover

Hover is also used to get debug information, which can be enabled in the preferences panel.

📁 Multiple Workspaces

coq-lsp supports projects with multiple _CoqProject files, use the "Add folder to Workspace" feature of Visual Studio code or the LSP Workspace Folders extension to use this in your project.

💾 .vo file saving

coq-lsp can save a .vo file of the current document as soon as it the checking has been completed, using the command Coq LSP: Save file to .vo.

You can configure coq-lsp in settings to do this every time you save your .vo file, but this can be costly so we ship it disabled by default.

⏱️ Detailed Timing and Memory Statistics

Hover over any Coq sentence, coq-lsp will display detailed memory and timing statistics.

Stats on Hover

🔧 Client-Side Configuration Options

coq-lsp is configurable, and tries to adapt to your own workflow. What to do when a proof doesn't check, admit or ignore? You decide!

See the coq-lsp extension configuration in VSCode for options available.

Configuration screen

🖵 Extensible, Machine-friendly Command Line Compiler

coq-lsp includes the fcc "Flèche Coq Compiler" which allows the access to almost all the features of Flèche / coq-lsp without the need to spawn a fully-fledged LSP client.

fcc has been designed to be machine-friendly and extensible, so you can easily add your pre/post processing passes, for example to analyze or serialize parts of Coq files.

🪄 Advanced APIs for Coq Interaction

Thanks to Flèche, we provide some APIs on top of it that allow advanced use cases with Coq. In particular, we provide direct, low-overhead access to Coq's proof engine using petanque.

♻️ Reusability, Standards, Modularity

The incremental document checking library of coq-lsp has been designed to be reusable by other projects written in OCaml and with needs for document validation UI, as well as by other Coq projects such as jsCoq.

Moreover, we are strongly based on standards, aiming for the least possible extensions.

🌐 Web Native!

coq-lsp has been designed from the ground up to fully run inside your web browser seamlessly; our sister project, jsCoq has been already been experimentally ported to coq-lsp, and future releases will use it by default.

coq-lsp provides an exciting new array of opportunities for jsCoq, lifting some limitations we inherited from Coq's lack of web native support.

🔎 A Platform for Research!

A key coq-lsp goal is to serve as central platform for researchers in Human-Computer-Interaction, Machine Learning, and Software Engineering willing to interact with Coq.

Towards this goal, coq-lsp extends and is in the process of replacing Coq SerAPI, which has been used by many to that purpose.

If you are a SerAPI user, please see our preliminary migrating from SerAPI document.

🛠️ Installation

In order to use coq-lsp you'll need to install both coq-lsp and a suitable LSP client that understands coq-lsp extensions. The recommended client is the Visual Studio Code Extension, but we aim to fully support other clients officially and will do so once their authors consider them ready.

🏘️ Supported Coq Versions

coq-lsp supports Coq 8.20, Coq 8.19, Coq 8.18, Coq 8.17, and Coq's master branch. Code for each Coq version can be found in the corresponding branch.

We recommended using Coq 8.19 or master version. For other Coq versions, we recommend users to install the custom Coq tree as detailed in Coq Upstream Bugs.

Note that this section covers user installs, if you would like to contribute to coq-lsp and build a development version, please check our contributing guide

🏓 Server

  • opam (OSX/Linux):

    opam install coq-lsp
    
  • Nix:

    • In nixpkgs: coqPackages.coq-lsp

    • The coq-lsp server is automatically put in scope when running nix-shell in a project using the Coq Nix Toolbox (added to the toolbox Oct 10th 2023).

    • An example of a flake that uses coq-lsp in a development environment is here https://github.com/HoTT/Coq-HoTT/blob/master/flake.nix .

  • Windows: Experimental Windows installers based on the Coq Platform are available at https://www.irif.fr/~gallego/coq-lsp/

    This provides a Windows native binary that can be executed from VSCode normally. As of today a bit of configuration is still needed:

    • In VSCode, set the Coq-lsp: Path to:

      • C:\Coq-Platform~8.20-lsp\bin\coq-lsp.exe

    • In VSCode, set the Coq-lsp: Args to:

      • --coqlib=C:\Coq-Platform~8.20-lsp\lib\coq\

      • --coqcorelib=C:\Coq-Platform~8.20-lsp\lib\coq-core\

      • --ocamlpath=C:\Coq-Platform~8.20-lsp\lib\

    • Replace C:\Coq-Platform~8.20-lsp\ by the path you have installed Coq above as needed

    • Note that the installers are unsigned (for now), so you'll have to click on "More info" then "Run anyway" inside the "Windows Protected your PC" dialog

    • Also note that the installers are work in progress, and may change often.

  • Do it yourself! Compilation from sources

🫐 Visual Studio Code

  • Official Marketplace: https://marketplace.visualstudio.com/items?itemName=ejgallego.coq-lsp

  • Open VSX: https://open-vsx.org/extension/ejgallego/coq-lsp

🦄 Emacs

  • An experimental configuration for lsp-mode has been provided by Arthur Azevedo de Amorim, supporting goal display, see the Zulip thread for more information.

✅ Vim

  • Experimental CoqTail support by Wolf Honore: https://github.com/whonore/Coqtail/pull/323

    See it in action https://asciinema.org/a/mvzqHOHfmWB2rvwEIKFjuaRIu

🩱 Neovim

  • Experimental client by Jaehwang Jung: https://github.com/tomtomjhj/coq-lsp.nvim

🐍 Python

  • Interact programmatically with Coq files by using the Coqpyt by Pedro Carrott and Nuno Saavedra.

coq-lsp users and extensions

The below projects are using coq-lsp, we recommend you try them!

🗣️ Discussion Channel

coq-lsp discussion channel it at Coq's Zulip, don't hesitate to stop by; both users and developers are welcome.

☎ Weekly Calls

We hold (almost) weekly video conference calls, see the Call Schedule Page for more information. Everyone is most welcome!

❓FAQ

See our list of frequently-asked questions.

⁉️ Troubleshooting and Known Problems

Coq upstream bugs

Unfortunately Coq releases contain bugs that affect coq-lsp. We strongly recommend that if you are installing via opam, you use the following branches that have some fixes backported:

  • For 8.20: No known problems

  • For 8.19: opam pin add coq-core https://github.com/ejgallego/coq.git#v8.19+lsp

  • For 8.18: opam pin add coq-core https://github.com/ejgallego/coq.git#v8.18+lsp

  • For 8.17: opam pin add coq-core https://github.com/ejgallego/coq.git#v8.17+lsp

Known problems

  • Current rendering code can be slow with complex goals and messages, if that's the case, please open an issue and set the option Coq LSP > Method to Print Coq Terms to 0 as a workaround.

  • coq-lsp can fail to interrupt Coq in some cases, such as Qed or type class search. If that's the case, please open an issue, we have a experimental branch that solves this problem that you can try.

  • Working with multiple files in Coq < 8.17 requires a Coq patch, see below for instructions.

  • If you install coq-lsp/VSCode simultaneously with the VSCoq Visual Studio Code extension, Visual Studio Code gets confused and neither of them may work. coq-lsp will warn about that. You can disable the VSCoq extension as a workaround.

  • _CoqProject file parsing library will often exit 1 on bad _CoqProject files! There is little coq-lsp can do here, until upstream fixes this.

Troubleshooting

  • Some problems can be resolved by restarting coq-lsp, in Visual Studio Code, Ctrl+Shift+P will give you access to the coq-lsp.restart command. You can also start / stop the server from the status bar.

  • In VSCode, the "Output" window will have a "Coq LSP Server Events" channel which should contain some important information; the content of this channel is controlled by the Coq LSP > Trace: Server option.

📔 Planned Features

See planned features and contribution ideas for a list of things we'd like to happen.

📕 Protocol Documentation

coq-lsp mostly implements the LSP Standard, plus some extensions specific to Coq.

Check the coq-lsp protocol documentation for more details.

🤸 Contributing and Extending the System

Contributions are very welcome! Feel free to chat with the dev team in Zulip for any question, or just go ahead and hack.

We have a contributing guide, which includes a description of the organization of the codebase, developer workflow, and more.

Here is a list of project ideas that could be of help in case you are looking for contribution ideas, tho we are convinced that the best ideas will arise from using coq-lsp in your own Coq projects.

Both Flèche and coq-lsp have a preliminary plugin system. The VSCode extension also exports and API so other extensions use its functionality to query and interact with Coq documents.

🥷 Team

  • Ali Caglayan (co-coordinator)

  • Emilio J. Gallego Arias (Inria Paris, co-coordinator)

  • Shachar Itzhaky (Technion)

🕰️ Past Contributors

  • Vincent Laporte (Inria)

  • Ramkumar Ramachandra (Inria Paris)

©️ Licensing Information

The license for this project is LGPL 2.1 (or GPL 3+ as stated in the LGPL 2.1).

  • This server forked from our previous LSP implementation for the Lambdapi proof assistant, written by Emilio J. Gallego Arias, Frédéric Blanqui, Rodolphe Lepigre, and others; the initial port to Coq was done by Emilio J. Gallego Arias and Vicent Laporte.

  • Syntax files in editor/code are partially derived from VSCoq by Christian J. Bell, distributed under the terms of the MIT license (see ./editor/code/License-vscoq.text).

👏 Acknowledgments

Work on this server has been made possible thanks to many discussions, inspirations, and sharing of ideas from colleagues. In particular, we'd like to thank Rudi Grinberg, Andrey Mokhov, Clément Pit-Claudel, and Makarius Wenzel for their help and advice. Gaëtan Gilbert contributed many key and challenging Coq patches essential to coq-lsp; we also thank Guillaume Munch-Maccagnoni for his memprof-limits library, which is essential to make coq-lsp on the real world, as well for many advice w.r.t. OCaml.

As noted above, the original implementation was based on the Lambdapi LSP server, thanks to all the collaborators in that project!

Dependencies (18)

  1. ppx_hash >= "v0.15.0" & < "v0.18"
  2. ppx_compare >= "v0.15.0" & < "v0.18"
  3. ppx_sexp_conv >= "v0.15.0" & < "v0.18"
  4. sexplib >= "v0.15.0" & < "v0.18"
  5. ppx_import >= "1.11.0"
  6. ppx_deriving_yojson >= "3.4"
  7. ppx_deriving >= "4.2.1"
  8. coq >= "8.20" & < "8.21"
  9. ppx_inline_test >= "0.14.1"
  10. menhir >= "20220210"
  11. dune-build-info >= "3.2.0"
  12. uri >= "4.2.0"
  13. yojson >= "1.7.0"
  14. cmdliner >= "1.1.0"
  15. dune >= "3.2.0"
  16. memprof-limits >= "0.2.1"
  17. ocaml <= "5.0"
  18. ocaml >= "5.0"

Dev Dependencies

None

Used by

None

Conflicts (1)

  1. result < "1.5"
OCaml

Innovation. Community. Security.